稿件详情
当前位置:首页 >稿件详情
发布日期:2024-11-19 浏览次数:185 下载次数:122 DOI字段:10.19457/j.1001-2095.dqcd25090
摘要:随着可再生能源的不断发展,可再生能源在电网的占比越来越大,为了保证考虑可再生能源接入的电力系统的供电安全,检修工作的最佳协调变得越来越重要。目前检修计划制定工具受运行安全标准约束和电网复杂性的影响,具有可操作性低、模拟意外事故计算量大等问题,为了减轻人工计算负担,提出利用机器学习模型以快速可靠的方式预测应急情况的结果。该方法在兰州某地区设备中进行了测试,涵盖了10 kV和220 kV的电压等级。通过测试和比较朴素贝叶斯分类器、支持向量机和基于决策树的模型,可知基于决策树的随机森林算法在识别可安全检修时间段的准确率高于90%,始终优于其他算法。另外,通过实验表明,可再生能源发电的预期增长将影响未来电力系统的可检修性,部分地区非安全检修时间段将增加20%。
关键词:可再生能源;机器学习;检修计划;可靠性;基于决策树的模型
中图分类号:TM732 文献标识码:A
天津电气科学研究院有限公司 版权所有 津ICP备07001287号 Powered by Handynasty
网上违法和不良信息举报电话(河东区):022-84376127 | 举报邮箱:wangzheng@tried.com.cn