服务号

订阅号

稿件详情

当前位置:首页 >稿件详情

基于SA/WGAN的新能源场景生成方法

发布日期:2024-06-20  浏览次数:151  下载次数:148   DOI字段:10.19457/j.1001-2095.dqcd24775

      摘要:随着新能源渗透率逐年提高,其出力的随机性与波动特性难以准确预测,给电力系统的运行、规划和调度提出了严峻的挑战,因此新能源的不确定性建模受到越来越多的关注。为了更有效地获得新能源出力场景中的时序特征,提出了一种基于数据驱动的新能源场景生成方法,通过采用SA/WGAN 模型,把自注意力机制和带有梯度惩罚的生成对抗网络判别器结合,构建基于两种模型结合的深度学习模型,有效突显新能源出力场景中时序特性,增强场景生成中非线性拟合能力。算例结果表明,所提模型的新能源生成场景相较于原始WGAN和WGAN-LSTM的场景生成结果,可以有效提高精准度,同时具备了WGAN-GP训练结果稳定和SA计算速度快的优势,更高效地生成与真实新能源场景分布接近的场景。


      关键词:无监督学习;自注意力机制;生成对抗网络;新能源;场景生成


      中图分类号:TM28     文献标识码:A 





返回顶部

天津电气科学研究院有限公司 版权所有 津ICP备07001287号 Powered by Handynasty

网上违法和不良信息举报电话(河东区):022-84376127 | 举报邮箱:wangzheng@tried.com.cn