感应式和电场式结合的无线电能传输系统研究

高世萍,冯玉明

(中车青岛四方机车车辆股份有限公司,山东 青岛 266111)

摘要:介绍了一种感应式(IPT)和电场式(CPT)结合的无线电能传输系统,该系统具有抗偏移能力强,传输功率高的优点,同时存在耦合器的设计比单独的IPT或CPT系统复杂,它们的尺寸和距离都受到相互制约的问题。为解决上述问题,提出了一种外加可调电感来改变感应式和电场式传输功率比的方法,能更加简便地实现不同功率比的系统。基于LCCL补偿的系统,设计了一个感应式和电场式传输功率比为3的结合系统,并验证了其可行性。

关键词:无线电能传输;感应式无线电能传输;电场式无线电能传输 中图分类号:TM28 文献标识码:A DOI:10.19457/j.1001-2095.dqcd19969

Research on an Inductive and Capacitive Combined Wireless Power Transfer System

GAO Shiping, FENG Yuming (CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, Shandong, China)

Abstract: An inductive power transfer (IPT) and capacitive power transfer (CPT) combined wireless power transfer system was introduced, which has the advantage of strong anti-offset capability and high transmission power. The design of integrated coupler is more complex than IPT or CPT system individually for its size and distance are constrained mutually. To solve the above problem, a method of changing the inductive and electric field transmission power ratio was proposed by adjusting extra inductance easily. A combined system with 3 transmission ratio based on a LCCL compensation system was designed, and its feasibility was verified.

Key words: wireless power transfer; inductive power transfer(IPT); capacitive power transfer(CPT)

无线电能传输技术使得电气设备摆脱了电 线的束缚,避免电线在接触时产生磨损和打火等 现象,增加了电气设备的安全性和可靠性,同时解 决了在一些场合下无法使用电线进行电气连接的 问题。实现无线电能传输技术的方式主要有:磁 感应耦合式、磁耦合谐振式、微波辐射式、激光式 和电场耦合式。其中,最有发展潜力和研究最为 广泛的是磁感应式和与之对偶的电场式^[1-2]。为 了提高系统的输出功率,对于这两种无线电能传 输方式文献中提到多种补偿拓扑,如:LCL,CLLC, LCLC等结构^[3-5]。虽然补偿网络可以提高系统的 功率因数和传输能力,但多余的元件也使系统结 构变得复杂,同时增加了投入的成本。

为了充分利用补偿元件,有实验团队提出了 将磁感应耦合和电场耦合两种方式相结合的系统^[6]。他们将双LCL拓扑补偿的电场耦合式系统 中一次侧和二次侧的其中一个电感作为磁感应 耦合的原、副边进行能量传输。通过增加能量传 输的通道,提高系统的传输效率和功率。虽然该 方法的优点得到了实验的验证,但仍有不足。首 先,极板和线圈是分开放置的,且两者尺寸都比 较大,需要占据更多的空间,若将两个耦合机制 结合到一起,能使系统变得简洁美观,因此,在之 后对 IPT和CPT结合系统的研究中,人们通常将 两个耦合器结合到一起,并发现 I-CPT结合的系 统具有同时传输能量和信号的作用^[7],也可以增 强系统对传输距离的敏感度^[8]。同时,极板可以 有效地屏蔽线圈辐射的磁场。

在实际应用中,如果将线圈和极板做成一个 整体,会增加耦合器设计的复杂程度。文献[7-8] 中,都是通过控制线圈或极板的某个尺寸参数, 然后针对另一个变量进行多组仿真得到尺寸最 优、参数合适的耦合结构。但在实验中实际参数 与仿真参数仍可能不同,而一旦结构确定后,参 数不易调节。在对参数精度要求比较高的情况 下,这种方法并不合适。因此,本文提出了外加 电感的调节方法,外部电感相比绕制好的传能线 圈更易调节,能够更容易达到设计要求。

1 电场式与感应式结合 IPT 系统原 理分析及耦合器结构

1.1 电路工作原理分析

基于 LCCL 补偿的结合系统由直流电压源、 高频逆变器、补偿电路、耦合结构、高频整流器及 负载等构成。电场式与感应式相结合系统的电 路拓扑如图 1 所示,其中直流输入电压为 $U_{\rm E}$,直 流负载电压为 $U_{\rm R}$ 。逆变部分是由 $S_1 \sim S_4$ 4个 MOSFET 组成的单相全桥逆变电路,整流部分是 由 $D_1 \sim D_4$ 4个二极管组成的全桥整流电路。连接 逆变器和整流器的网络是本文的主要分析对象, 即无线电能传输系统。在图 1 中, $L_1 = L_2$ 分别用 于补偿电路中的极板电容和外加电容,同时 $L_1 =$ L_2 之间的互感为M,每对极板间的等效电容是 $C_{\rm int}$, C_1 和 C_2 分别为原边外加补偿电容和副边外加 节电感和副边外加调节电感。

图 2 是结合系统的 π 形等效电路,用有效值 为 U₁的交流电压源代替原电路中的直流电压源和 高频逆变电路,用阻值为 R_e的交流负载代替高频 整流电路和直流负载 R,用有效值为 U₂的交流电 压源代替原电路中高频整流电路的输入电压。分 别将原边电感 L_{f1},L₁和副边电感 L₂,L₂合并为一 个电感 L_p和 L_s,将两对极板的等效电容合并为一 个电容 C_E。等效过程中的关系可用下列等式表示:

$$\begin{cases} U_1 = \frac{2\sqrt{2}}{\pi} \cdot U_{\rm E} \\ U_2 = \frac{2\sqrt{2}}{\pi} \cdot U_{\rm R} \end{cases}$$
(1)

图 3 解耦 T 形电路 Fig.3 Decoupling T-type circuit

对图 3 所示的电路进行求解,列出网孔电流 方程有:

$$\begin{bmatrix} U_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$
(4)

式中:*I*₁,*I*₂分别表示两个网孔的网孔电流。 阻抗矩阵的参数如下式所示:

$$\begin{cases} Z_{11} = 0 \\ Z_{12} = -\frac{1}{j\omega \cdot C_{\rm M}} + j\omega \cdot M \\ Z_{21} = -\frac{1}{j\omega \cdot C_{\rm M}} + j\omega \cdot M \\ Z_{22} = R \end{cases}$$
(5)

将式(5)代入式(4)可以解得两个回路的电流*I*,和*I*,的表达式:

$$\begin{cases} I_{1} = \frac{\omega^{2} \cdot C_{M}^{2} R}{(\omega^{2} \cdot C_{M}^{2} \cdot M + 1)^{2}} \cdot U_{1} \\ I_{2} = -\frac{j\omega \cdot C_{M} R}{\omega^{2} \cdot C_{M} \cdot M + 1} \cdot U_{1} \end{cases}$$
(6)

副边接收到的功率由感应式传输和电场式 传输两部分构成,为了更清楚地认识系统的特 征,需要计算两个传输机构分别的贡献情况。 感应式部分的传输功率可由下式主示。

へ即分的 (を 御 切 率 可 田 下 式 衣 小 :

$$P_{\text{IPT}} = R_{e} [j\omega \cdot M \cdot I_{1} (-I_{2})^{*}]$$

$$= \frac{\omega^4 C_{\rm M}^3 MR}{(C_{\rm M} M \omega^2 + 1)^3} \cdot U_1^2$$
(7)

式中:()*表示对括号内的量取其共轭值。 副边外加电容上的电压按下式计算:

$$U_{c2} = I_2 \cdot (j\omega \cdot L_2 + R) + j\omega M \cdot I_1 \qquad (8)$$

电场式部分的传输功率表示为

$$P_{\rm CPT} = R_{\rm e} [U_{\rm C2} \cdot (I_2)^*] = \frac{\omega^2 C_{\rm M}^2 R}{(C_{\rm M} M \omega^2 + 1)^3} \cdot U_1^2$$
(9)

计算两个能量传输通道的功率比r:

$$r = \frac{P_{\text{IPT}}}{P_{\text{CPT}}} = \omega^2 \cdot C_{\text{M}} \cdot M$$
$$= \omega^2 \cdot (2C_1 + C_1^2 / C_{\text{E}}) \cdot M \qquad (10)$$

由电路中的谐振关系知道L_p与电路中电容 的关系,用L_p表示C₁为

$$C_{1} = \frac{\sqrt{4\omega^{4}C_{\rm E}^{2}L_{\rm P}^{2} + 1}}{2\omega^{2}L_{\rm P}} - \frac{2\omega^{2}C_{\rm E}L_{\rm P} + 1}{2\omega^{2}L_{\rm P}} \quad (11)$$

将式(11)代入式(10)得:

$$r = \frac{M \cdot (\sqrt{4\omega^4 C_{\rm E}^2 L_{\rm P}^2 + 1} + 1)}{2 \cdot \omega^2 C_{\rm E} L_{\rm P}^2}$$
(12)

从式(12)可以看出,功率比r与互感M成正 比,与等效电容C_e和外加电感L_p成反比,因此可以 通过调节上述3个参数来得到不同的功率传输比。

1.2 耦合器结构

图4为结合系统的耦合器结构示意图,其中, P₁,P₂为原边发射极板,P₃,P₄为副边接收极板,M₁ 为原边发射线圈,M₂为副边发射线圈。4块极板 的大小相同,*l*₁为极板的长度,*l*₂为极板的宽度,*D* 为发射极板与接收极板间的距离;原、副边线圈 的尺寸相同,*d*₁为线圈的长度,*d*₂为线圈的宽度,*d* 为发射线圈与接收线圈间的距离。原、副边线圈 的大小和空气间隙决定了线圈自感值和互感值 的大小,极板正对面积、空气间隙和摆放位置决 定了极板等效电容的大小。受到四个极板间交 叉耦合的影响,极板的等效电容不等于正对两极 板间的电容值,而需要根据交叉耦合电容的值计 算得到。根据文献[8]可知,用于传输能量的等效 电容*C*₆跟交叉电容间的关系如下式所示:

$$C_{\rm E} = \frac{C_{13} \cdot C_{24} - C_{14} \cdot C_{23}}{C_{13} + C_{24} + C_{14} + C_{23}}$$
(13)

图 4 能量传输机构示意图 Fig.4 Diagram of energy transmission mechanism

通过 Maxwell 仿真,设计得到一组合适的耦 合结构参数。耦合器的尺寸为: $d=60 \text{ mm}, d_1=d_2=$ 200 mm, $D=150 \text{ mm}, l_1=l_2=600 \text{ mm}$ 。用 RLC 表测 量得到能量传输机构参数为:原边线圈自感 $L_1=$ 56.5 μ H,副边线圈自感 $L_2=59.2 \mu$ H,原、副边线圈 的互感 $M=13.3 \mu$ H,极板正对电容 $C_1=26.5 \text{ pF}$,极 板正对电容 $C_{24}=26.2 \text{ pF}$,极板交叉电容 $C_{14}=10.1 \text{ pF}$, 极板交叉电容 $C_{23}=10.3 \text{ pF}$,原边同侧极板电容 $C_{12}=12 \text{ pF}$,副边同侧极板电容 $C_{34}=11 \text{ pF}$ 。将能量 传输机构参数代入式(13)可以得到极板等效电 容 $C_{\rm E}$ 的值为 8.07 pF。

图 5 为耦合器偏移时系统互感 M 和互容 $C_{\rm E}$ 随偏移量的变化趋势。从图 5 中可以看出,互感 M从 13.76 μ H变化到 33.59 μ H,变化量为 73.9%, 而 CPT 的互容 $C_{\rm E}$ 从 8.82 pF 变化到了 3.82 pF,变化 量为 56%,可见 CPT 系统具有更好的抗偏移性能。

图 5 互感M和互容 $C_{\rm E}$ 随偏移量变化趋势 Fig.5 Trend of M and $C_{\rm E}$ with offset

结合系统由于 CPT 系统的加入提升了系统 的抗偏移性能,为了进一步对比结合系统与独立 IPT 系统的抗偏移性能,绘制了 IPT 与 CPT 的结 合系统的功率标幺值与在同等参数下的独立 IPT 系统的功率标幺值随偏移量的变化趋势如图6所 示,从图6中可以明显看出结合系统的抗偏移性

图 6 结合系统与独立 IPT 功率标幺值随偏移量变化趋势 Fig.6 The per-unit value of integrated system and independent IPT varies with the offset

能要优于独立的IPT系统。

2 系统特性

2.1 IPT和CPT的功率比r变化对系统的影响

由式(12)知,当系统频率、线圈互感、极板等 效电容确定后,系统的功率比只与电感 L_p 的值有 关。图7为系统功率比随电感 L_p 变化的曲线,因 为 L_p 由外加电感 L_n, L_n 和线圈自感 L_1, L_2 组成,所 以可以通过调节 L_n, L_n 来方便地改变系统的功率 比r。相比于通过设计线圈和极板结构来实现一 定功率比的系统,调节外加电感更加容易实现。

- 图7 系统功率比r随外加电感的变化曲线
- Fig.7 The power ratio *r* of the system varies with the applied inductance

从图7中可以看出,由于电路中的谐振关系, 增大 L_p 相当于减小 C_1 ,即增大 C_1 容抗。这将导致 极板两侧电压升高,由 CPT系统传输功率公式 $P = \omega \cdot C_M \cdot U_1 \cdot U_2 \cdot \sin \varphi$ 可知,这将增大 CPT通 道的传输功率,使得传输比*r*降低。

图 8 所示是在相同的直流输入电压条件下, 系统功率和功率变化率随功率比r的变化曲线。

Fig.8 Output power P and power change rate t versus r

图8中,实线表示系统功率的变化,可以看出 在相同输入电压的情况下,系统传输功率随r的 增大而增大;虚线表示在耦合器发生50%的偏移 时,系统功率相对变化率t随r的变化情况,随着r 的增大,系统功率变化率t也变大,这是因为耦合 器发生偏移时,极板等效电容减小的速度慢于线 圈互感减小的速度,随着r的增大,IPT传输作为 传输功率的主导通道,M的影响增大,系统抗偏 移力降低。t可由下式计算:

$$t = |\frac{P_{\mathcal{K} \parallel \bar{k}} - P_{50\% \parallel \bar{k}}}{P_{\mathcal{K} \parallel \bar{k}}}|$$
(14)

这里设计系统频率f = 600 kHz, 传输比例 r = 3,根据图7可知 L_p 为208 μ H, $L_n = 151.5 \mu$ H, $L_n = 148.8 \mu$ H。

2.2 系统仿真模型搭建

用Matlab/Simulink对电路进行仿真,仿真模型如图9所示,图中第 I 部分是直流电压源和高频逆变部分;第 II 部分是能量传输电路,包括电场耦合机构和磁场耦合机构;第 III 部分是高频整流及负载。

Fig.9 Circuit simulation model

图 10a 所示是逆变器输出端的电压、电流波 形。电流略微滞后电压,是为了在高频的工作条 件下实现逆变器的软开关状态,进而减小开关损 耗。图 10b是整流器输入的电压、电流波形,电压 和电流同相位。图 10b 和图 10a 分别是在仿真过 程同一时刻的波形图,可以看出,图 10b 中的电压 波形滞后图 10a 中的电压波形。式(6)表示电流 *I*₂滞后电压 *U*₁,而负载呈阻性,*I*₂和 *U*₂同相位,所 以可以推断出电压 *U*₂滞后电压 *U*₁。因此仿真结 果与公式推导是相符的。

图10 系统输入输出波形

3 实验验证

为了验证本文所提出的感应式和电场式结 合的无线电能传输系统,利用1.2节耦合器结构 参数设计的耦合机构,以600 kHz为工作频率建 立实验验证平台。系统参数为: $U_{\rm E}$ =150 V,f=600 kHz, $L_{\rm f1}$ =151.5 μ H, $L_{\rm f2}$ =148.8 μ H, $L_{\rm 1}$ =56.5 μ H, $L_{\rm 2}$ = 59.2 μ H,M=13.3 μ H, $C_{\rm E}$ =8.07 pF, $C_{\rm 1}(C_{\rm 2})$ =330.4 pF。

实验装置如图11。控制系统以TMS320C6713 作为控制核心,开关半导体器件选择APT56F50L, 二极管半导体器件选择DSEI2x61-02A。图12 为实验中系统交流侧输入/输出的电压、电流波形 图。可以看出,实验波形与仿真波形一致,验证 了理论的可行性。

图13 系统直流侧功率和效率图

率为605W,直流侧传输效率为89.71%。

4 结论

本文设计了一个输出功率为605 W、效率为 89.71%的感应式和电场式结合的无线电能传输 系统。结合系统综合了 IPT系统高传输功率和效 率、CPT系统中传输极板成本低的优点,相比传 统的电场式系统具有更高的效率,同时,从仿真 波形可以看出,结合系统比传统的 IPT系统有更 强的抗偏移能力。为了更便捷地调节电路参数, 简化设计耦合器的过程,本文还提出利用外加电 感来调节系统功率传输比例。通过调节外加电 感的值来改变功率传输比例,使系统的传输功率 和抗偏移能力都达到设计的要求。

参考文献

- [1] 陈希有,伍红霞,牟宪民,等.电流型电场耦合无线电能传输 技术[J].中国电机工程学报,2015,35(9):2279-2286.
- [2] 李思奇,代维菊,赵晗,等.电场耦合式无线电能传输的发展
 与应用[J].昆明理工大学学报(自然科学版),2016,41(3):
 76-84.
- [3] 苏玉刚,谢诗云,呼爱国,等.LCL复合谐振型电场耦合式无
 线电能传输系统传输特性分析[J].电工技术学报,2015,30
 (19):55-60.
- [4] Lu F, Zhang H, Hofmann H, et al. A CLLC-compensated High Power and Large Air-gap Capacitive Power Transfer System for Electric Vehicle Charging Applications[C]//Applied Power Electronics Conference And Exposition. IEEE, 2016:1721-1725.
- [5] Lu F, Zhang H, Hofmann H, et al. A Double-sided LCLCcompensated Capacitive Power Transfer System for Electric Vehicle Charging[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6011-6014.
- [6] Li X, Tang C, Dai X, et al. An Inductive and Capacitive Combined Parallel Transmission of Power and Data for Wireless power Transfer Systems[J]. IEEE Transactions on Power Electronics, 2018, 33(6):4980-4991.
- [7] Zhang X Y, Xue C D, Lin J K. Distance-insensitive Wireless Power Transfer Using Mixed Electric and Magnetic Coupling for Frequency Splitting Suppression[J]. IEEE Transactions on Microwave Theory & Techniques, 2017, 65(11):4307-4316.
- [8] Lu F, Zhang H, Mi C. A Two-plate Capacitive Wireless Power Transfer System for Electric Vehicle Charging Applications[J].
 IEEE Transactions on Power Electronics, 2018, 33 (2): 964-969.

收稿日期:2019-02-26 修改稿日期:2019-06-11