MMC-HVDC通用启动控制策略研究

马嘉伟,陈卓,王占宝,刘炜,李健

(贵州大学 电气工程学院,贵州 贵阳 550025)

摘要:在基于模块化多电平换流器高压直流输电系统(MMC-HVDC)正常运行之前需对换流器桥臂子模 块电容充电,为了减少预充电阶段产生的电压电流冲击,需对系统的预充电启动策略进行设计。以电容电压 实时排序算法为基础,分析了换流器不可控充电阶段特性。在可控阶段,根据子模块闭锁和旁路的运行状态 提出了子模块的开环预充电方案,该方案适用于不同类型子模块且无需PI参数整定。最后,在Matlab/Simulink中搭建换流站预充电模型对所提策略进行验证。

关键词:高压直流输电;模块化多电平换流器;预充电;启动控制 中图分类号:TM460 文献标识码:A DOI:10.19457/j.1001-2095.dqcd19258

Research on Universal Start up Control Strategy of MMC-HVDC

MA Jiawei, CHEN Zhuo, WANG Zhanbao, LIU Wei, LI Jian (Electrial Engineering College, Guizhou University, Guiyang 550025, Guizhou China)

Abstract: The capacitor of the inverter bridge arm sub-module needs to be charged before the normal operation of MMC-HVDC, in order to reduce the voltage and current surges in pre-charge phase and the design of the system's precharge startup strategy is required. Based on the real-time sequencing algorithm of capacitor voltage, the characteristics of the uncontrollable charging phase of the MMC was analyzed. In the controllable stage, an open-loop pre-charging scheme of the sub-module was proposed according to the operating state of the sub-module blocking and bypass. The scheme was applicable to different types of sub-modules and did not require PI parameter tuning. At last, the precharging model of converter station was built in Matlab/Simulink to verify the proposed strategy.

Key words: high-voltage direct current transmission; modular multi-level converter(MMC); pre-charged; start up control

模块化多电平换流器(modular multilevel converter, MMC)是电压源型换流器的一种优良 拓扑,基于MMC的新型直流输电系统除了具备 传统的直流输电系统的一系列优点外,还具备开 关损耗小、输出波形质量高、系统损耗低、不平衡 运行能力强、故障保护和恢复能力好、易于扩展、 冗余易配置等优点^[1-2]。基于以上优点,模块化多 电平换流器型高压直流输电系统(modular multilevel converter high-voltage direct current, MMC-HVDC)在风电、光伏等可再生能源的发电并网、 孤岛和城市供电以及交流系统间的互联等应用 领域,具有广阔的发展前景^[3-4]。

从目前国内外研究来看,人们对于MMC-HVDC的研究重点放在换流器的调制策略、桥臂

环流抑制、子模块电容稳压控制等方面,且一般 情况下假设子模块电容电压已达到额定值,而对 换流器启动预充电控制策略研究较少^[5-6]。

换流器启动是直流输电系统正常运行前必须经历的环节。启动控制的目的是使用合适的 控制策略使得换流器子模块电压迅速提高到额 定电压,同时要尽量防止过电流和过电压冲 击。现有的MMC预充电方式分为他励充电和 自励充电。他励预充电方案瞬态处理能量等级 低,控制过程简单,但是由于需使用辅助充电电 源,因此在直流输电系统中这种方法既不经济 也不实用。文献[7-9]中以半桥子模块为前提 设计了MMC自励启动预充电控制方案。文献 [10]在考虑了交流电压跌落比与系统短路比关

基金项目:国家自然科学基金资助项目(51567005);黔科合平台人才([2017]5788);黔科合LH字([2017]7230) 作者简介:马嘉伟(1992-),男,硕士研究生, Email:1027566606@qq.com

系的情况下给出了多端直流输电系统的预充电 策略。文献[11]以双钳位子模块为基础提出了 分组预充电的方案。现有的MMC自励预充电 方案中多数以半桥子模块预充电为主,且采用 较为复杂的双闭环控制结构,并在控制结构中 加入了多于1个的PI控制器,在整定PI参数时较 为困难。

本文提出了一种通用的子模块预充电方案, 该方案是在系统可控预充电阶段,以桥臂电容电 压实时排序算法为基础,通过控制半桥型(half bridge sub-module,HBSM)、全桥型(full bridge sub-module,FBSM)和双钳位型(clamp-double sub-module,CDSM)子模块中特定IGBT的通断, 从而使桥臂中闭锁和旁路子模块数量处于动态 变化中,以达到电容预充电目的的开环控制方 案,该方案无需额外的辅助电源和PI参数整定环 节,控制过程简单,易于实现。最后通过Matlab/ Simulink 仿真,验证该充电方案在不产生过大冲 击电流的情况下,将子模块电压提升至额定值附 近,效果较为理想。

1 MMC拓扑结构及运行原理

MMC拓扑结构如图1所示,o点为零电位参 考点,一个换流器有6个桥臂,其中任一桥臂由电 感L和N个子模块串联组成,每相由上、下桥臂组 合而成且桥臂电气参数均相同。MMC采用全控 型器件IGBT控制通断,因此可以工作在整流和 逆变状态。子模块作为MMC的基本单元,其拓 扑结构可分为半桥型、全桥型和双钳位型3种。 系统运行时控制子模块中IGBT的开通与关断得 到子模块输出,然后将不同子模块的输出量进行 叠加便是理想的系统输出波形。在MMC-HVDC系统中改变桥臂子模块数量即可实现对 系统电压等级和容量的改变。

2 通用启动控制策略

在不可控充电阶段结束后,通过动态改变任 一桥臂中闭锁和旁路子模块的数量,使桥臂子模 块电容电压充电到额定值。对于FBSM和 CDSM,在可控充电阶段,通过控制子模块中开关 管的通断可以将其等效为与HBSM类似的闭锁 和旁路状态,因此充电过程与HBSM类似。

2.1 不可控充电阶段

在预充电开始时由于子模块电压为0,不满足 IGBT触发电路分压取能要求,此时的IGBT无法实 现通断控制,故子模块处于闭锁状态,交流系统只能 通过与IGBT反并联的二极管为直流侧电容充电。 2.1.1 HBSM不可控充电阶段

HBSM不可控充电电路图如图2所示。图3 为半桥子模块不可控充电等值电路图。

图2 HBSM不可控充电电路图

Fig.2 HBSM uncontrollable charging circuit diagram

图 3 不可控充电等值电路图 Fig.3 Uncontrollable charge equivalent circuit diagram

现对预充电过程分析如下:当U_a>U_b>U_c 时,对于3个上桥臂而言,a相电压最大,可知桥臂 1电流为负(桥臂电流参考方向如图3中所示), 其状态类似于短路,故P点电压也为U_a。而桥臂 3和桥臂5承受正向电压,其中电流为正,桥臂3 和桥臂5处于充电状态。对于3个下桥臂,由于c 相电压最低,故桥臂2状态类似于短路状态且电 流为负,N点电压同时为U_c,故桥臂4和桥臂6承 受正向电压,处于充电模式。因此在换流站不可 控预充电阶段中,换流站6个桥臂中总有2个桥 臂处于短路状态,其他4个桥臂处于充电状态。

以桥臂3为例进一步分析,预充电开始瞬间

桥臂3承受的正向电压为 $U_{bp} = U_a - U_b$,桥臂内电 容电压和为 E_{bp} ;当 $U_{bp} > E_{bp}$ 时,桥臂3承受正向电 压,继续充电;当 $U_{bp} < E_{bp}$ 时,充电电流反向,但是 由于子模块二极管 VD的存在,使得桥臂放电电 流为零。则不控充电结束后电容电压为

$$U_{\rm uc} = \frac{U_{\rm lm}}{N} \tag{1}$$

式中: U_{im} 为交流系统线电势幅值; N为MMC桥 臂子模块数。

2.1.2 FBSM不可控充电阶段

当MMC桥臂中为FBSM时,其不可控预充 电阶段电路如图4所示。

图4 FBSM不可控充电电路图

Fig.4 FBSM uncontrollable charging circuit diagram

在不可控充电阶段桥臂电流为正或为负时, FBSM电容均处于充电状态,故每个桥臂可获得 的最大充电电压为 U_m/2,在不可控充电结束后 电容电压为^[12]

$$U_{\rm uc} = U_{\rm lm}/(2N) \tag{2}$$

2.1.3 CDSM不可控阶段

当MMC桥臂中为CDSM时,在不可控充电 阶段,其充电电路如图5所示。

当桥臂电流为负时,CDSM中2个储能电容 为并联关系;当桥臂电流为正时,子模块中2个储 能电容为串联关系^[13]。因此在*a*,*b*相充电回路中 处于充电状态的等效子模块数为1.5*N*,故在不可 控充电结束后,子模块的电容电压为

$$U_{\rm uc} = \frac{U_{\rm lm}}{1.5N} \tag{3}$$

2.1.4 不可控充电阶段分析

通常在MMC启动之初,子模块电容电压很低,因此在预充电开始瞬间,电路相当于处于短路状态,此时必定伴随着过电流冲击情况^[14]。故应在不可控充电回路中串入限流电阻以避免过流冲击。

在不可控充电阶段中充电回路可以用一阶零 状态响应进行等效。下文对半桥有源不可控充电 阶段限流电阻选取进行分析。当*U*_a>*U*_b>*U*_c时, 换流站处于充电状态的3个桥臂相当于并联关系, 则有:

$$U_{\rm dc}(t) = U_{\rm lm}(1 - e^{-t/\tau})$$
 (4)

其中 $\tau = 6RC/N$ 式中: $U_{de}(t)$ 为直流侧电压。

$$I_{\rm lim} = \frac{U_{\rm lm}}{\sqrt{4R^2 + X^2}} \tag{5}$$

其中 $X=2\omega(L_0+\frac{L}{2})-\frac{N}{3\omega C}$

式中: *I*_{im} 为充电时最大电流幅值; *R* 为限流电阻; ω 为交流侧系统角频率。

由式(5)可得限流电阻:

$$R = \frac{\sqrt{U_{\rm lm}^2 - I_{\rm lim}^2 [2\omega(L_0 + \frac{L}{2}) - \frac{N}{3\omega C}]^2}}{2I_{\rm lim}}$$
(6)

综合考虑变压器、换流器装置和系统容量 后,可以使用式(6)计算出限流电阻^[15]。进一步 分析,由桥臂电路结构可知:

$$NU_{\rm uc} = \sqrt{3}U_{\rm m} \tag{7}$$

$$U_{\rm uc} = \frac{\sqrt{3}U_{\rm m}}{N} \tag{8}$$

式中: Um 为系统相电压幅值。

在不考虑冗余的情况下子模块额定电压 U.。为

$$U_{\rm cc} = \frac{U_{\rm dc}}{N} \tag{9}$$

设电容电压不控充电率η为

$$\eta = \frac{U_{\rm uc}}{U_{\rm cc}} \tag{10}$$

一般情况下,交流系统等效线电势有效值为 $U_{dc}/2$ 的1.00~1.05倍,故 U_{m} 的值为

$$U_{\rm m} = \frac{\sqrt{2}}{\sqrt{3}} (1.00 - 1.05) U_{\rm dc}/2$$
(11)

83

综上所述则有:

$$\eta = \frac{U_{\rm uc}}{U_{\rm m}} = \frac{\sqrt{3}U_{\rm m}}{U_{\rm dc}} = 0.71 \sim 0.74$$
(12)

即半桥子模块不可控充电阶段充电率可以达到 71%~74%,而对于全桥和双钳位子模块而言,充 电率分别为35%和52%左右,因此有必要在可控 充电阶段将子模块电容电压提升至其额定值。

2.2 可控预充电阶段

由以上分析可知,当换流站不可控预充电结 束后,子模块电容电压尚达不到其额定值,但此 时子模块电容电压已经达到其开关管触发电路 的分压取能要求^[16]。因此继续提升子模块电容 电压到额定值是可控充电阶段的主要目标。

2.2.1 HBSM 拓扑简化

图 6 为 HBSM 等效控制电路图。如图 6a, HBSM 中 T₁和 T₂都闭锁,则子模块处于闭锁状态,处于闭锁状态的子模块在桥臂电流为正时电 容将被充电,桥臂电流为负时电容被旁路^[17]。图 6b 中 T₁闭锁 T₂开通,则子模块处于旁路状态。

Fig.6 HBSM equivalent control circuit diagram

有源侧MMC可控充电阶段刚开始时,此时 桥臂电压 U_{ab} 为:

I

$$J_{\rm qb} = U_{\rm lm} \tag{13}$$

由式(9)可知:

$$U_{\rm cc} = \frac{U_{\rm dc}}{N} = \frac{2U_{\rm lm}}{\sqrt{3}\,mN} \tag{14}$$

式中:m为MMC电压调制比。 令

$$N_{\rm b} = \frac{\sqrt{3}\,mN}{2} \tag{15}$$

则式(14)可以表示为

$$U_{\rm cc} = \frac{U_{\rm qb}}{N_{\rm b}} \tag{16}$$

根据式(13)~式(16)的分析可知,不可控充 电结束后桥臂电压为交流侧系统电压,若此时通 过旁路某一桥臂中1个或多个子模块使得桥臂中 处于闭锁充电的子模块数为 N_b,桥臂中旁路状 态子模块数为 N-N_b,则子模块电压可以由 U_w 继续提升至 U_w。当无源充电时,有:

$$U_{\rm qb} = \frac{U_{\rm dc}}{2} \tag{17}$$

其充电过程与有源充电类似。

2.2.2 FBSM 拓扑简化

图7为FBSM等效控制电路图。在可控充电 阶段,保持FBSM中T4处于导通状态,此时每个 桥臂的充电情况与HBSM不可控预充电情况相 同,即桥臂电流为正时子模块电容充电,桥臂电 流为负时子模块被旁路。此阶段中子模块电容 电压值继续上升直至稳态^[18]。然后控制子模块 中T₃关断,便得到FBSM的等效闭锁电路拓扑, 如图7a所示,当控制子模块中T₃开通便得到FB-SM的等效旁路电路拓扑,如图7b所示。稳态时 桥臂中子模块闭锁数和旁路数均和HBSM预充 电分析的相同,此处不再赘述。

Fig. 7 FBSM equivalent control circuit di

2.2.3 CDSM 拓扑简化

图 8 为 CDSM 等效控制电路图。CDSM 处 于可控充电状态时,保持 CDSM 中 T₅ 为开通状 态,此时每个桥臂的充电情况与HBSM 不可控预 充电情况相同,子模块电容电压值会继续提升至 稳态。然后控制子模块中开关管 T₂和 T₃的关断 可得到 CDSM 等效闭锁电路拓扑,如图 8a 所示。 当控制子模块中开关管 T₂和 T₃的开通便得到 CDSM 等效旁路电路拓扑,如图 8b 所示。因此 CDSM 的预充电过程与FBSM 相同。

Fig.8 CDSM equivalent control circuit diagram

因此,对于FBSM和CDSM预充电过程,在 可控充电阶段都可以转化为与HBSM预充电类 似的过程。

2.2.4 子模块电压平衡控制

在MMC子模块预充电过程中,为了保持子

模块电压的均衡,故在桥臂中引入电容电压实时 排序算法对子模块电压进行实时排序,如图9所 示,桥臂中电压较高的子模块将被旁路,而电压 较低的子模块将被闭锁。

Fig.9 Capacitor voltage balance control diagram

图9中, U_e, 为任意时刻子模块电容电压, 在子 模块电压均衡控制中根据 i_{sm} 的方向不同, 从而确 定桥臂中具体的旁路、闭锁子模块。另外在该阶段 中定义桥臂闭锁子模块变化函数 N_b(t) 如下式所示:

 $N_b(t) = round(N-kt)$ (18) 式中: round(*) 为取整函数; k 为闭锁子模块的变 化速率,其值的选取与 MMC 预充电时间和充电 电流成正相关关系,但在实际情况下需综合考虑 系统参数后取其值。

并在该函数中引入斜率控制环节来控制桥 臂中充电子模块数量。

当t=0时表示桥臂不可控阶段结束,系统处于 可控充电阶段开始瞬间,此时桥臂中处于闭锁充 电的子模块数量为N,之后在函数N_b(t)控制下,桥 臂中充电子模块线性减少至式(15)中定义的N_b, 子模块电压达到额定值,系统预充电阶段结束。

2.3 MMC预充电控制过程

在可控充电阶段,控制每个桥臂中闭锁子模块数量由N线性减少到N_b,桥臂中旁路子模块数量则由0线性增加到N-N_b,在此阶段充电电流可由 k大小来进行抑制,具体预充电流程如图10所示。

3 仿真验证

为验证本文所提换流站预充电控制策略的 有效性,在Matlab/Simulink中搭建了换流站预 充电模型。仿真系统参数为:额定直流电压 10 000 V,电网电压5 000 V,桥臂电感10 mH,桥 臂子模块数20,子模块电容5 mF,子模块额定电 压500 V。

图 11 为HBSM 交流侧预充电仿真图。HB-SM换流站交流侧预充电开始时,系统进入不可 控充电阶段,子模块电容电压由0开始逐渐提升, 0.5 s后退出限流电阻,进入可控充电阶段,同时 桥臂中闭锁子模块数变化趋势如图11a所示由20 开始线性减少至14,桥臂中旁路子模块数由0线 性增加至6。图11b为开环控制和闭环控制电容 电压对比图,由仿真波形图可知,开环控制预充 电在开始时电容电压上升比较迅速,而闭环控制 预充电时,系统在0.7 s换流站解锁瞬间,电容电 压会产生一定时间振荡后达到稳态并使电容电 压充电到额定值。图11c为交流侧a相充电电流 图,同样在闭环控制系统中换流站解锁时,会有 较大的电流暂态冲击,而开环控制中充电电流在 充电开始时较大,随着时间的推移迅速减小,且 相对闭环控制充电电流比较平滑。

图 12 为 HBSM 直流侧预充电仿真图。在直流侧时,预充电阶段换流站不向负载供电,子模块以相为单位并接于公共直流母线间。进入不可控充电阶段后,0.2 s时子模块电压趋于稳定,退出限流电阻,桥臂中闭锁子模块数变化趋势如图 12a 所示,由 20线性减少到 10,电容电压变化趋势如图 12b 所示,逐渐上升至额定值,且电压变化曲线未产生大的电压冲击。图 12c 为 a 相上桥臂充电电流图,在子模块数量动态变化时,桥臂电流会不可避免地产生一些尖峰电流,但其值较小且持续时间较短,因此对系统影响较小。

图 13 为 FBSM 预充电仿真图。FBSM 进入 不可控充电阶段后,0.1 s时开通子模块中 T₄开关 管,此时其充电状态和 HBSM 相同,0.5 s时退出 限流电阻并开始线性控制桥臂中闭锁和旁路子 模块数量变化。图 13a 和图 13c 分别为交流侧和 直流侧电容电压波形图,图 13b 为交流侧充电电 流波形图。

CDSM预充电过程与FBSM类似,其仿真波 形如图14所示。图14a为电容电压波形图,图 14b交流侧充电电流波形图。

通过以上仿真波形图可以看出,开环控制预 充电方案对 HBSM,FBSM 和 CDSM 型 MMC 在 不产生过大的电流冲击的情况下,电容预充电电

Fig.14 CDSM pre-charge simulation diagram

压曲线较为平滑,充电效果较为理想。

4 结论

本文根据桥臂子模块的闭锁和旁路2种状态 提出了适用于HBSM,FBSM和CDSM的充电控 制方案,不同于传统闭环控制结构,该方案使用 开环结构,控制过程简单并通过仿真验证预充电 效果良好。

另外,随着MMC-HVDC系统容量的增加, 换流站子模块的规模将日益庞大,因此如何通过 适当的控制方案建立起子模块电压,以实现系统 的快速平稳启动是研究的核心内容,其中启动过 程中换流站预充电控制策略是研究工作的难点, 同时由于 MMC-HVDC 相比于传统输电系统的 一系列优点,光伏电网、风电网并网启动以及多 端电网的启动控制研究是未来研究的趋势。

参考文献

- 王永平,赵文强,杨建明,等.混合直流输电技术及发展分析[J].电力系统自动化,2017,41(7):156-167.
- [2] Tian Kai, Wu Bin, Du Sixing, et al. A Simple and Cost-effective Precharge Method for Modular Multilevel Converters by Using a Low-voltage DC Source [J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5321-5329.
- [3] 李邱.模块化多电平变换器环流抑制和调制策略研究[D]. 重庆:重庆大学.2016.
- [4] 杨晓峰,林智钦,郑琼林,等.模块组合多电平变换器的研究综述[J].中国电机工程学报,2013,33(6):1-13.
- [5] 楚遵方,李耀华,王平,等.柔性直流输电系统中模块化多 电平变流器的直流侧充电策略分析[J].电工技术学报, 2015,30(12):136-142.
- [6] 董云龙,田杰,黄晓明,等.模块化多电平换流器的直流侧 主动充电策略[J].电力系统自动化,2014,38(24):68-72.
- [7] 郭高朋,胡学浩,温家良,等.模块化多电平变流器的预充 电控制策略[J].电网技术,2014,38(10):2624-2630.
- [8] 华文,赵晓明,黄晓明,等.模块化多电平柔性直流输电系统的启动策略[J].电力系统自动化,2015,39(11):51-57.

- [9] 宋平岗,李云丰,王立娜,等. MMC-HVDC电容协同预充电 控制策略[J].高电压技术,2014,40(8):2471-2477.
- [10] 肖晃庆,徐政,薛英林,等. 多端柔性直流输电系统的启动 控制策略[J]. 高电压技术,2014,40(8):2550-2557.
- [11] 薛英林,徐政.基于箝位双子模块的MMC-HVDC 起动控制 策略[J].电力系统保护与控制,2013,41(11):1-7.
- [12] 赵文强,高得力,马云龙,等.基于混合式MMC的混合高压 直流输电系统启动策略[J].电力系统自动化,2018,42
 (7):8-12.
- [13] 杨洋,王瑶,李浩涛,等.子模块混合型LCC-MMC混合直流 输电系统的启动控制策略[J].电力系统保护与控制, 2018,46(8):58-64.
- [14] 阎发友,汤广福,孔明,等.基于模块化多电平换流器的直 流电网预充电控制策略[J].中国电机工程学报,2015,35 (20):5147-5154.
- [15] 周建,苏建徽,王新颖,等.模块化多电平换流器的预充电 控制[J].高压电器,2014,50(4):103-107.
- [16] 丁久东, 卢宇, 董云龙, 等. 半桥和全桥子模块混合型换流 器的充电策略[J]. 电力系统自动化, 2018, 42(7): 72-76.
- [17] 裘鹏,杨美娟,章姝俊,等. MMC-MTDC 系统协调启动控制 策略[J].电网技术,2015,39(7):1800-1807.
- [18] Zhang Lei, Qin Jiangchao, Wu Xiajie, et al. A Generalized Precharging Strategy for Soft Startup Process of the Modular Multilevel Converter-based HVDC Systems [J]. IEEE Transactions on Industry Applications, 2017, 53(6):5645–5647.

收稿日期:2018-07-04 修改稿日期:2018-08-17