三相四开关有源电力滤波器的容错控制技术

王兰,陈俐

(河北石油职业技术学院信息工程系,河北 廊坊 065000)

摘要:设计了基于 dq 电流谐波检测法、电流矢量轨迹斜率故障诊断法以及模糊自适应 PR 控制的容错型有 源电力滤波器,并提出了利用电压差值前馈补偿方法消除直流母线中点电位偏移。搭建了容错型三相四开关 有源电力滤波器的整体模型和实验平台,研究其在故障发生前、故障发生后以故障状态运行与故障发生后以 拓扑重构状态运行时对谐波的补偿性能。结果表明,所设计的容错型有源电力滤波器在故障前与故障后拓扑 重构运行时均有良好的谐波补偿效果。

关键词:有源电力滤波器;容错;模糊自适应PR控制;电压差值前馈 中图分类号:TM351 文献标识码:A DOI:10.19457/j.1001-2095.dqcd19201

Fault-tolerant Control Technology of the Three-phase Four-switch Active Power Filter

WANG Lan, CHEN Li (Department of Information Engineering, Hebei Technical College of Petroleum Profession, Langfang 065000, Hebei, China)

Abstract: The fault-tolerant active power filter (APF) based on dq current harmonics detection, current vector trajectory slope method and fuzzy adaptive PR control was designed. The compensation method of voltage difference feed-forward was proposed to eliminate the neutral point potential offset in DC bus. The overall model and the experimental platform of fault-tolerant three-phase four-switch active power filter were built, and the compensation performance of the harmonic when APF runs before the fault occurs, runs after the fault occurs and runs in topology reconfiguration state after the fault occurs were analyzed separately. The results show that the fault-tolerant active power filter has good harmonic compensation effect before and after the topology reconstruction operation.

Key words: active power filter(APF); fault-tolerant; fuzzy adaptive PR control; voltage difference feed-forward

目前,针对有源电力滤波器(APF)的研究多 集中于检测与控制算法的讨论,而对APF的实用 性与可靠性缺乏深入的研究与探讨。由于APF 主电路中的功率开关器件长期处于高频工作状 态,极易发生故障,将直接影响APF的输出电流, 进而会影响整个系统的运行^[1]。因此,APF容错 方案的研究逐渐受到了重视。

常见的APF故障诊断的方法主要有:简单直 流法、归一化直流法、平均电流 Park 矢量法、电压 解析模型法和下管电压检测法。这些方法存在 计算量大、易出现误诊断现象、故障诊断的噪声 特性和鲁棒性高、故障诊断较复杂等缺点,降低 了故障诊断的效率^[2-6]。 目前,可行性较高的APF容错方案主要包括 逆变器冗余^[7]、桥臂冗余^[8]、三相四桥臂冗余^[9]和 四开关两相容错^[10]等方式。逆变器冗余采用备 份逆变器保证系统运行的可靠性,对系统故障诊 断的要求低且无需定位故障,但是逆变器利用率 低,设备体积大且成本高。桥臂冗余需要在原有 桥臂旁并联1个辅助桥臂,以便某相发生故障时 使用,比起逆变器冗余,这种方式的补偿效果不 变,并减少了硬件投入,成本较低,但控制和辅助 设备较为复杂。三相四桥臂冗余和四开关两相 容错的工作方式,在逆变器单相故障发生时,采 用负载中点和辅助桥臂连接的方式,使系统工作 于两相状态下,虽然这种方法故障检测及补偿的

基金项目:河北省教育厅基金资助项目(ZD2017081) 作者简介:王兰(1983-),女,硕士,讲师,Email:wanglan_66@126.com

可靠性高,但是由于其需要增加复杂的辅助设备,增加了系统成本,且不适用于三相六开关拓扑的并联型有源电力滤波器。

考虑到APF系统故障诊断的准确性和效率, 以及故障补偿方法的可靠性和系统成本问题,本 文基于三相三线制并联电压型有源电力滤波器, 提出了电流矢量轨迹斜率故障诊断法,采用 dq检 测法对电流谐波进行检测;针对容错型有源电力 滤波器故障前后拓扑结构不同造成 PR 参数不恒 定的问题,采用模糊自适应 PR 控制器对其进行 改进,针对直流母线电压偏移的问题,提出一种 电压前馈补偿法对其进行抑制,并对该方法进行 了数学推导以证明其有效性。搭建容错型有源 电力滤波器系统模型,研究其在故障发生前后的 补偿效果与补偿性能。通过实验验证了本文所 提出的 APF 容错方案能够准确实时地检测到 APF系统故障,并对故障进行定位,有效地完成 故障补偿。

1 APF故障诊断方法

1.1 电流矢量轨迹斜率诊断法

APF 主电路的故障采用电流矢量轨迹斜率 法进行诊断,此方法简单易实现,1个电流周期内 即可诊断和定位出IGBT的开路故障^[11-12]。考虑到 APF 主电路输出电流的基波分量为三相正弦波, 可提取基波分量进行运算并将其矢量轨迹斜率 作为故障诊断的判据,具体实现原理如下所述。

利用Clark变换将三相电流变换到两相坐标 系下:

$$\begin{cases} i_{a} = \sqrt{\frac{2}{3}} (i_{a} - \frac{1}{2}i_{b} - \frac{1}{2}i_{c}) \\ i_{\beta} = \sqrt{\frac{2}{3}} (\frac{\sqrt{3}}{2}i_{b} - \frac{\sqrt{3}}{2}i_{c}) \end{cases}$$
(1)

式中: i_a , i_b , i_c 为APF在三相静止坐标系下的电源 输出电流; i_a , i_b 为APF在d-q旋转坐标系下的电 源输出电流。

电流矢量为

$$\boldsymbol{I}_{s} = \boldsymbol{i}_{a} + \boldsymbol{j}\boldsymbol{i}_{\beta} \tag{2}$$

对电流进行周期采样,电流矢量轨迹斜率为

$$\Psi = \frac{i_{\alpha(t)} - i_{\alpha(t-1)}}{i_{\beta(t)} - i_{\beta(t-1)}}$$
(3)

式中:i(t),i(t-1)分别为t及t-1时刻的电流值。

♥随时间变化,当采样量为三相正弦值时, 其矢量轨迹为圆形^[13];当某相存在IGBT开路故 障导致采样量非三相正弦值时,其矢量轨迹根据 开断相的不同分别呈现不同特征。图1为APF正 常运行与某相故障时的电流矢量轨迹。

图 1 APF 正常运行与某相故障时的电流矢量轨迹 Fig.1 Current vector trajectory when APF runs in normal operation or a phase failure occurs

应用电流矢量轨迹斜率法对 APF 进行故障 诊断。首先,通过电流矢量轨迹判断主电路 IG-BT 是否存在故障,分别取轨迹与 α - β 平面的横、 纵坐标轴交点[$i_{a(k)}$,0],[0, $i_{\beta(p)}$],在 APF 正常运行 时,基波分量为三相正弦值,电流矢量轨迹为圆 形,此时 $||i_{a(k)}|$ - $|i_{\beta(p)}|| \ge \sigma$,の为消除误差所设定的阈 值;若 $|i_{a(k)}|$ - $|i_{\beta(p)}|| \ge \sigma$,则判定 IGBT 存在开路故 障。其次,在确定某相存在开路故障后,对轨迹 的斜率进行求取。可以根据 Ψ 值对故障进行定 位,但是,由于测量存在误差,只需要对 Ψ 值的正 负进行判断即可判定故障开关器件所在相。表1 为电流矢量轨迹斜率法故障定位方法。

表1 电流矢量轨迹斜率法故障定位

Tab.1 Fault location of current vector trajectory slope method

$ \dot{i}_{a(k)} - \dot{i}_{\beta(p)} $	Ψ	故障相
$\leqslant \sigma$		无
> 0	0	а
$> \sigma$	+	b
$> \sigma$	-	С

1.2 d-q 谐波检测法

目前,APF的谐波电流大多使用基于瞬时无 功功率理论的方法进行检测,而基于瞬时无功功 率理论又衍生出多种检测性能更加优异的方 法。当前使用较为普遍的是 dq0 检测法,在电压 失真与负载电流不对称的情况下仍能准确提取 出谐波分量。

由于本文研究的是三相三线制系统,不存在 零序分量,可略去零轴,即采用 dq 检测法进行谐 波的检测。其实质是利用 Park 变换将待测的三 相电流由静止的 abc 坐标系转变到旋转的 dq 坐 标系中,便于分离出电流的基波正序分量^[14]。图 2为三相四开关APF拓扑结构,其中,*usa*,*usb*,*usc*为 系统电源电压;*isa*,*isb*,*isc*为电源电流;*iLa*,*iLb*,*iLc*为负 载电流;*ica*,*icb*,*icc*为三相静止坐标系下容错型APF 的补偿电流;*u*_{C1},*u*_{C2}为直流侧电容C1,C2的电压。

Fig.2 Topology of three-phase four-switch APF

当三相负载电流含有各种不同频次的谐波 时,可表示为

$$\begin{bmatrix} i_{1.a} \\ i_{1.b} \\ i_{1.c} \end{bmatrix} = \begin{bmatrix} i_{1n} \sin(n\omega t + \varphi_{1n}) \\ i_{1n} \sin(n\omega t + \varphi_{1n} - \frac{2}{3}\pi) \\ i_{1n} \sin(n\omega t + \varphi_{1n} + \frac{2}{3}\pi) \end{bmatrix} + \begin{bmatrix} i_{2n} \sin(n\omega t + \varphi_{2n}) \\ i_{2n} \sin(n\omega t + \varphi_{2n} - \frac{2}{3}\pi) \\ i_{2n} \sin(n\omega t + \varphi_{2n} + \frac{2}{3}\pi) \end{bmatrix}$$
(4)

式中: i_{1n} , i_{2n} , φ_{1n} , φ_{2n} 分别为各次正、负序电流的有效值和初始相角; ω 为基波角频率。

对式(4)进行Park变换:

$$\begin{bmatrix} \dot{i}_{d} \\ \dot{i}_{q} \end{bmatrix} = C_{dq} \begin{vmatrix} \dot{i}_{La} \\ \dot{i}_{Lb} \\ \dot{i}_{Lc} \end{vmatrix} = \begin{bmatrix} \dot{i}_{1n} \sin[(n-1)\omega t + \varphi_{1n}] \\ -i_{1n} \cos[(n-1)\omega t + \varphi_{1n}] \end{bmatrix} + \begin{bmatrix} \dot{i}_{2n} \sin[(n+1)\omega t + \varphi_{2n}] \\ -i_{2n} \cos[(n+1)\omega t + \varphi_{2n}] \end{bmatrix}$$
(5)

其中

$$\boldsymbol{C}_{dq} = \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \times \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

式中: C_{dq} 为Park变换矩阵。

由式(5)可以看出,变换后的正序分量会比 原始的波次减1,而负序分量变换后的波次将会 增1,据此,基波正序分量转化成了直流量,其他 各分量仍为交流量。变换后得到的*d*轴与*q*轴的 电流由直流分量 *ī*_d 和交流分量 *î*_d 2部分组成,即

$$\begin{bmatrix} \hat{i}_d \\ \hat{i}_q \end{bmatrix} = \begin{bmatrix} \bar{i}_d + \hat{i}_d \\ \bar{i}_q + \hat{i}_q \end{bmatrix}$$
 (6)

dq 检测法原理框图如图 3 所示。三相负载 电流 i_{la}, i_{lb}, i_{le}经 dq 变换后得到的 i_d, i_q均可分解为 直流和交流 2 部分, 经低通滤波器滤除交流分量 得到直流分量, 再对该直流分量进行 dq 反变换, 即可得到三相负载电流中的基波正序分量 i_d, i_b, i_et。从负载电流中减去所得基波正序电流, 结果 即为需要检测的谐波电流 i_d, i_b, i_{ch}。

Fig.3 Principle diagram of dq detection method

2 APF容错控制方法

2.1 模糊自适应PR控制

根据内膜原理,要实现对给定信号的无静差 跟踪,PR控制器必须包含该信号的模型。给定信 号为交流信号时,PR控制器要含有广义积分器才 能实现无静差跟踪。广义积分器的传递函数为

$$G_0(s) = \frac{s}{s^2 + \omega^2} \tag{7}$$

式中: ω为角频率。

在本文所述系统中,由于谐波电流为交流信号,PI控制器无法实现对给定信号的精确控制, 需要用到PR控制器,其传递函数为

$$G_{1}(s) = k_{p} + \frac{k_{r}s}{s^{2} + \omega^{2}}$$
 (8)

式中: k, 为比例系数; k, 为谐振系数。

G₁(s) 在ω处开环增益无穷大,保证了对频率为ω的正弦信号的无静差跟踪。 k_p可以增大除ω外 其他频率处的开环增益, k_r可以在根轨迹上为系 统灵活地配置闭环极点^[15]。

由于容错型有源电力滤波器在故障发生后 进行了拓扑重构,以三相四开关模式运行,与正 常运行时的三相六开关模式有不同的控制参数 或不同的控制方法。模糊自适应 PR 控制是一种 利用模糊数学的基本理论来实时整定 PR 控制器 参数的控制方法,PR 控制器的参数随系统状态的 变化而实时变化,使控制系统品质指标保持在理 想范围内^[16]。模糊自适应PR控制器以误差e与误 差变化ec作为输入,利用已建立好的模糊控制规 则在线对PR参数进行修改,以实现对PR参数自整定 的要求,模糊自适应PR控制器结构如图4所示。

图4 模糊自适应PR控制器结构框图 Fig.4 The block diagram of fuzzy adaptive PR controller 模糊自适应PR控制整定后PR参数为

$$\begin{cases} k_{p} = k_{p}^{*} + \Delta k_{p} \\ k_{r} = k_{r}^{*} + \Delta k_{r} \end{cases}$$
(9)

式中: k_{p}^{*} , k_{r}^{*} 分别为 PR 参数的预设值; Δk_{p} , Δk_{r} 分别为 PR 参数的修正值; k_{p} , k_{r} 分别为整定后的 PR 参数值。

表2为 k_p 整定的模糊规则表,表3为 k_p 整定的 模糊规则表。输入模糊子集为e与ec,取e的物 理论域为[-9,9],ec的物理论域为[-3,3],输出 模糊子集为 Δk_p 与 Δk_r ,输入与输出的物理论域所 对应的模糊论域均为[NB,NM,NS,ZO,PS,PM, PB]。将模糊化后的e与ec通过表中规则进行模 糊推理,得出 Δk_p 与 Δk_r 的模糊量,采用重心法对 其进行解模糊化得到精确值,通过式(9)计算得 出模糊自适应整定后的PR参数。e与ec分别表 示谐波电流与APF输出的补偿电流的误差与误 差变化率。

表2 k_p的模糊规则表

		Tab.2	Fuzzy	rule tabl	e of $k_{\rm p}$		
	NB	NM	NS	ZO	PS	PM	PB
NB	PB	PB	PM	PM	PS	ZO	ZO
NM	PB	PB	PM	PS	PS	ZO	NS
NS	NB	NM	NS	ZO	ZO	NS	NS
ZO	PM	PM	PS	ZO	NS	NM	NM
PS	PS	PS	ZO	NS	NS	NM	NM
PM	PS	ZO	NS	NM	NM	NM	$N\!B$
PB	ZO	ZO	NM	NM	NM	NB	NB

		Tab.3	Fuzzy 1	rule table	e of $k_{\rm r}$		
	NB	NM	NS	ZO	PS	PM	PB
NB	ZO	ZO	ZO	ZO	ZO	ZO	ZO
NM	ZO	ZO	ZO	ZO	ZO	ZO	ZO
NS	NB	NM	NS	NS	ZO	PS	NS
ZO	NM	NM	NS	ZO	PS	PM	PM
PS	NM	NS	ZO	PS	PS	PM	PB
PM	ZO	ZO	ZO	ZO	ZO	ZO	ZO
PB	ZO	ZO	ZO	ZO	ZO	ZO	ZO

2.2 中点电压差值前馈补偿法

直流母线电压的大小及其变化会对 APF 的

补偿性能造成直接影响,为使APF直流母线电压 保持稳定,需要与电网进行有功功率的能量交 换。在APF的实际应用中,最常用PI闭环对直流 母线电压进行控制。由于直流母线侧由两电容 串联组成,两电容电压不可能维持恒定,会存在 电压偏差与电压波动。直流母线中点电位不平 衡会使APF输出电压不平衡,从而引起输出电流 不对称,进而导致电网电流谐波补偿效果变差, 甚至会对运行系统造成威胁。因此需要通过一 定手段对直流母线中点电压偏移进行有效抑制, 实现均压。

定义功率开关器件的开关函数为

$$S_j = \begin{cases} 1 & \text{上管开通下管关断} \\ -1 & \text{下管开通上管关断} \end{cases} j = a, b$$
 (10)

直流母线上下两电容电流分别为*i*_{c1},*i*_{c2},其 与开关函数的关系如表4所示。

表4 直流母线电容电流与开关函数的关系

Tab.4 Relationship between capacitance current of DC bus and switching function

S_a	S_b	i_{c_1}	i_{c_2}
1	1	i_{ca} + i_{cb}	0
1	-1	i_{ca}	$-i_{cb}$
-1	1	\dot{l}_{cb}	$-i_{ca}$
-1	-1	0	$-i_{ca}-i_{cb}$

设 C_1, C_2 电容值均为C,由图2可知 $i_{c_2} = i_{cc} + i_{c_1}$, 综合 $i_{ca} + i_{cb} + i_{cc} = 0$ 与表4可得直流母线两电容电流为

$$\begin{cases} i_{c_1} = C \frac{\mathrm{d}u_{c_1}}{\mathrm{d}t} = \frac{1}{2} (S_a i_{ca} + S_b i_{cb} - i_{cc}) \\ i_{c_2} = C \frac{\mathrm{d}u_{c_2}}{\mathrm{d}t} = \frac{1}{2} (S_a i_{ca} + S_b i_{cb} + i_{cc}) \end{cases}$$
(11)

对补偿电流进行 dq 变换,结合式(11)可得:

$$\begin{cases} \frac{\mathrm{d}u_{c_1}}{\mathrm{d}t} = \frac{1}{2C} (\lambda_{11} i_{cd} - \lambda_{12} i_{cq}) \\ \frac{\mathrm{d}u_{c_2}}{\mathrm{d}t} = \frac{1}{2C} (\lambda_{21} i_{cd} - \lambda_{22} i_{cq}) \end{cases}$$
(12)

其中

$$\lambda_{11} = S_a \cos \omega t + S_b \cos(\omega t - \frac{2}{3}\pi) - \cos(\omega t + \frac{2}{3}\pi)$$
$$\lambda_{12} = -S_a \sin \omega t - S_b \sin(\omega t - \frac{2}{3}\pi) + \sin(\omega t + \frac{2}{3}\pi)$$
$$\lambda_{21} = S_a \cos \omega t + S_b \cos(\omega t - \frac{2}{3}\pi) + \cos(\omega t + \frac{2}{3}\pi)$$
$$\lambda_{22} = -S_a \sin \omega t - S_b \sin(\omega t - \frac{2}{3}\pi) - \sin(\omega t + \frac{2}{3}\pi)$$

式中:*i*_{eq}分别为*dq*旋转坐标系下容错型APF的直轴和交轴补偿电流。

假设电路处于稳态运行,则令 $i_{cd} = I_d^*$, $i_{cq} = I_q^* = 0$,根据式(12)可得:

$$\frac{\mathrm{d}\Delta u}{\mathrm{d}t} = -\frac{1}{C}\cos(\omega t + \frac{2}{3}\pi)I_d^* \qquad (13)$$

其中

对式(13)进行积分,可得:

$$\Delta u(t) = -\frac{I_d^*}{\omega C} \sin(\omega t + \frac{2}{3}\pi) + \frac{\sqrt{3}I_d^*}{2\omega C} \qquad (14)$$

 $\Delta u = u_{\rm C_1} - u_{\rm C_2}$

根据式(14)可知, Δ*u*含有正弦分量与初始直 流量,需对直流中点电位进行平衡补偿。在 I_a^{*} 中 加入一补偿量进行前馈补偿, 令 $I_{def} = I_a^{*} + f(\Delta u)$, 并且为了使Δ*u*成为 dΔ*u*/dt 的线性函数,则令 $f(\Delta u) = k\omega C \sec(\omega t + 2\pi/3)\Delta u$ 。根据式(13)和式(14) 可得:

$$\frac{\mathrm{d}\Delta u}{\mathrm{d}t} = -\frac{1}{C}\cos(\omega t + \frac{2}{3}\pi)I_{a}^{*} - k\omega\Delta u$$
$$= \frac{I_{a}^{*}}{C}\left[\frac{\sqrt{3}}{2}k + k\sin(\omega t + \frac{2}{3}\pi) - \cos(\omega t + \frac{2}{3}\pi)\right]$$
(15)

使 $\Delta u = d\Delta u/dt$ 不同正负号即可控制 Δu 趋于 稳定, $\Delta u = d\Delta u/dt$ 的关系如表5所示。

表5 $\Delta u 与 \Delta u/du 关系$

Tab.5 Relationship between Δu and $d\Delta u/dt$

Δu	$\theta = \omega t + \frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}k + k\sin\theta - \cos\theta$	$\frac{\mathrm{d}\Delta u}{\mathrm{d}t}$
+	$(-\frac{4\pi}{3}+2k\pi,\frac{\pi}{3}+2k\pi)$	$-, k < -\frac{2}{2+\sqrt{3}}$	-
		+, $k > -\frac{2}{2 + \sqrt{3}}$	+
-	$(\frac{\pi}{3}+2k\pi,\frac{2\pi}{3}+2k\pi)$	+, $k > \frac{1}{2\sqrt{3}}$	+
		-, $k < \frac{1}{2\sqrt{3}}$	_

由表5可见,控制k的取值即可控制 $d\Delta u/dt$ 的 正负,令 $k=0.6k_1(k_1$ 为调整系数, $k_1>1$)。 $\Delta u>0$ 时, 补入-k使 $d\Delta u/dt<0$; $\Delta u<0$ 时,补入+k使 $d\Delta u/dt>0$, 最终使偏差 Δu 趋于稳定甚至降为0。由于 $f(\Delta u)$ 中含有 sec($\omega t+2\pi/3$)项,可能会使补偿值异常大 而导致系统振荡,需要对其进行限幅。

控制系统完整结构框图如图5所示。系统的 工作原理为:若c相发生故障,APF由三相六开关 拓扑结构切换到三相四开关拓扑结构下工作,见 图2。首先,经过dq谐波检测法从负载电流中提 取谐波电流,同时对直流母线电压进行补偿;然 后,根据指令电流i_i利用模糊自适应PR控制方法 产生相应的占空比,控制有源滤波器的功率开关 管IGBT,使之产生与谐波反向的补偿电流,将此 补偿电流送至电网从而达到消除电网中谐波的 目的,使三相电流为正弦波。

3 仿真及结果分析

为了验证基于所提方法的容错型 APF 补偿 性能与容错能力,在PSCAD/EMTDC与 Matlab 仿 真平台上对其进行联合仿真研究,并对故障发生 前、故障发生后故障状态运行与故障发生后容错 状态运行3种状况进行了对比分析。

根据所用元件参数的设计规则,确定了仿真 系统各参数的具体数值,具体参数为:电网相电 压 220 V,直流母线总电压 700 V,交流侧电感 0.5 mH,直流侧电容 5 000×2 μF,电网频率 50 Hz 开关频率 10 kHz。

Fig.6 Source current before and after the failure of APF

仿真时间为0.25 s, c 相在0.1 s 时发生故障, 在0.15 s 时进行拓扑重构,将 APF 切换到容错三 相四开关拓扑结构下继续运行,得到的电源电流 波形如图6所示, APF 输出补偿电流跟踪指令电 流情况如图7所示。可以看出,所设计的 APF 补 偿效果良好,经过补偿后的电源电流波形呈现正 弦趋势。在发生单相故障时,APF输出的补偿电 流不能对指令电流进行实时跟踪导致电源电流 波形发生畸变;而在发生单相故障时,APF进行 拓扑重构后仍然能够对谐波进行实时跟踪补偿, 保证了所设计APF的容错运行能力。

APF故障发生前与故障发生拓扑重构后的 THD与频谱如图8所示。

图 8 APF故障发生前与故障发生拓扑重构后的 THD 与频谱 Fig.8 THD and spectrum before a fault occurred and after the fault when topology reconfiguration of APF

由图 8 可知, APF 发生故障前对电源电流进 行谐波补偿后的 THD 值为 1.11%, 发生单相故障 并进行了 APF 的拓扑重构后, 对电源电流进行谐 波补偿得到的 THD 值为 2.55%。虽然谐波含量 稍有上升, 但是仍然满足国家标准 5%以下的要求。

直流母线总电压波形和两分裂电容电压波 形如图9所示。由图9可以看出,APF突发故障时, 直流母线总电压与两分裂电容电压均产生波动, 而后又均逐渐趋于稳定,最终稳定于给定电压参 考值附近,保证了APF与电网的能量交换,同时 又说明了所提方法能够有效抑制直流母线中点 电位的偏移,进而保证了APF对谐波的准确补偿。

为了验证模糊自适应PR控制方法对APF故 障补偿的有效性,保持其他各参数不变,只改变 控制方法,分别对传统PR控制的APF与本文所 设计的模糊自适应PR控制的APF进行故障补偿 的仿真分析。将APF在0.1s时设置c相故障,使 其处于三相四开关状态运行,根据2种控制方法 进行仿真得到的电源电流波形如图10所示。由 于经过谐波补偿后的电源电流三相基本对称,所 以可以仅对一相进行分析。从图10中可明显看 出,传统PR控制的APF在发生单相故障时对谐 波进行补偿后得到的电源电流畸变明显,波形已 不呈正弦趋势;而模糊自适应PR控制的APF能 够自动调整PR参数,使APF的输出能够实时跟 踪指令电流,保证APF在不同状态下的补偿效果。

图 10 传统 PR 控制和模糊自适应 PR 控制方法下的电源电流波形

4 实验及结果分析

搭建基于DSP处理器的实验平台,对本文所 设计的容错型三相四开关有源电力滤波器系统 的谐波补偿功能做进一步研究。

在APF系统进入稳定运行状态后,对各部分进行实时检测,系统接入三相不可控整流桥带阻感负载时,图11为a相负载电流波形及其频谱分析。从图11中可以看出,电流波形已经不是正弦波,产生了严重畸变,THD值高达28.8%。将APF接入系统进行谐波补偿,经APF补偿后的电网电流波形和电流频谱分析如图12所示。经补偿后的电网电流波形已趋于正弦,THD值降至3.98%,说明本系统对谐波做到了准确且有效的补偿。

图11 a相负载电流波形和电流频谱分析

Fig.12 Waveform of power grid current after APF compensation and spectrum analysis

切断a相开关管对容错运行进行验证,图13 为故障容错实验波形与相应频谱分析,将APF故 障容错运行补偿后的电网电流与未经补偿的电 网电流作对比,可以明显地看出经补偿后的电网 电流谐波含量大大降低,低次谐波基本被消除, THD值降为4.32%,符合国家标准,同时也验证 了容错运行方案的可行性与正确性。

为了验证所提出的直流中点电压差值前馈 的控制方法的正确性与有效性,对直流母线两分 裂电容电压进行分析,实验结果如图14所示。从 图14中可以看出,在直流侧稳压及均压的控制 下,容错型APF稳定运行时,分裂电容电压波动

图 14 直流母线两分裂电容电压波形 Fig.14 Waveforms of DC bus two split capacitor voltages

5 结论

本文研究了三相四开关有源滤波器在故障 发生前后的补偿性能,结果表明:系统在故障发 生前后均能够有效降低谐波含量,满足国家标 准。对所提中点电压差值前馈补偿法的正确性 进行了验证,结果表明:该方法能够对直流母线 电压偏移进行有效抑制。并且搭建了实验平台, 实验结果符合仿真结果,表明所设计的有源电力 滤波器能够满足设计要求,实现预期目标。

参考文献

- [1] Kim N H, Yabg O, Kim M H, et al. Low Cost Fault Detection System for Inverter Driven Induction Motor Using Currents Signal [C]// 7th International Conference on Power Electronics, 2007:385-361.
- [2] Rothenhagen K, Fuchs F W. Performance of Diagnosis Methods for IGBT Open Circuit Faults in Voltage Source Active Rectifiers [C]//2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004:4348-4354.
- [3] Sobanski P, Orlowska-Kowalska T. Open Switch Fault Diagno-

sis Methods for an AC/DC Line-side Convertor [C]//2017 IEEE International Conference on Industrial Technology, 2017:1580-1585.

- [4] Gritli Y, Bellini A, Rossi C, et al. Condition Monitoring of Mechanical Faults in Induction Machines from Electrical Signatures: Review of Different Techniques [C]//2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017:77– 84.
- [5] Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault Detection of Open-switch Damage in Voltage-fed PWM Motor Drive Systems [J]. IEEE Transactions on Power Electronics, 2003, 18(2):587–593.
- [6] Yu O K, Park N J, Hyun D S. A Novel Fault Detection Scheme for Voltage Fed PWM Inverter [C]//Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics, 2006: 2654–2659.
- [7] 周元钧,刘宇杰.双通道永磁同步伺服系统的容错性能 [J].电工技术学报,2005,20(9):98-102.
- [8] 安群涛,孙醒涛,赵克,等.容错三相四开关逆变器控制策略[J].中国电机工程学报,2010,30(3):14-20.
- [9] Bianchi N, Bolognani S, Zigliotto M, et al. Innovative Remedial Strategies for Inverter Faults in IPM Synchronous Motor Drives[J]. IEEE Transactions on Energy Conversion, 2003, 18

(上接第54页)

35(12):2980-2988.

- [14] Qin J, Saeedifard M. Reduced Switching-frequency Voltagebalancing Strategies for Modular Multilevel HVDC Converters
 [J]. IEEE Transactions on Power Delivery, 2013, 28 (4) : 2403–2410.
- [15] 粟时平,魏新伟,牛鼎,等.模块化多电平换流器电容电压 改进排序平衡方法[J].中国电机工程学报,2017,37(13): 3874-3882.
- [16]公铮,伍小杰,戴鹏.模块化多电平换流器的快速电压模型预 测控制策略[J].电力系统自动化,2017,41(1):122-127.
- [17] Gao C, Jiang X, Li Y, et al. A DC-link Voltage Self-balance Method for a Diode- clamped Modular Multilevel Converter with Minimum Number of Voltage Sensors [J]. IEEE Transac-

(2):306-314.

- [10] 赵文祥,程明,朱孝勇,等.驱动用微特电机及其控制系统的可靠性技术研究综述[J].电工技术学报,2007,22(4): 38-46.
- [11] Tommaso D, Genduso F, Miceli R, *et al.* A Review of Multiple Faults Diagnosis Methods in Voltage Source Inverters [C]// 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 2015:1376–1381.
- [12] Choi U M, Lee J S, Blaabjerg F, et al. Open-circuit Fault Diagnosis and Fault-tolerant Control for a Grid-connected NPC Inverter[J]. IEEE Transactions on Power Electronics, 2016, 31 (10):7234–7247.
- [13] 秦娟英,王胜东.一种基于电流矢量轨迹的PWM逆变器故 障诊断方法[J].电子质量,2004,22(4):69-70.
- [14] 李文江,姜波,刘尹霞.基于*d*-q变换的谐波检测方法研究 [J].电气传动,2013,43(2):44-47.
- [15] 易皓,卓放,詹文达,等.用于并联型有源电力滤波器的谐振调节器选择性特性比较分析[J].中国电机工程学报, 2014,34(30):5320-5328.
- [16] 刘金琨. 先进 PID 控制 MATLAB 仿真[M]. 北京:电子工业 出版社,2016.

收稿日期:2018-06-19 修改稿日期:2018-07-25

tions on Power Electronics, 2012, 28(5): 2125-2139.

- [18] 赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多 电平换流器电容电压平衡控制[J].中国电机工程学报, 2011,31(21):48-55.
- [19] 魏承志,练睿,杨桦,等.一种混合型模块化多电平换流器的改进载波移相调制方法[J].电力系统自动化,2016,40 (7):68-73.
- [20] 崔福博,郭剑波,荆平,等.基于模块化多电平换流器的统 一潮流控制器桥臂电容电压平衡控制策略[J].电网技术, 2014,38(7):1939-1945.

收稿日期:2018-05-21 修改稿日期:2018-06-16