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Primary Frequency Regulation Capacity Allocation Method for Energy Storage Batteries Based on
Dual Adaptive PSO Algorithm
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Abstract: Wind power and other fluctuating renewable energy sources pose serious challenges to the safe and
stable operation of the power grid. Integrating energy storage technology with wind power can effectively mitigate
the volatility of wind power output and enhance grid frequency security. A dual adaptive particle swarm (PSO)
algorithm was proposed as a primary frequency modulation (FM) capacity allocation method for energy storage
batteries. The design method for battery power and capacity was explained. Combined with the economic model
and charging/discharging strategy of the storage batteries participating in primary frequency modulation, an
optimization allocation model was established for battery capacity to maximize the FM effect and the annualized
net return. The PSO algorithm was improved by adopting an adaptive inertia weight and adaptive speed and
position updating strategy to enhance convergence speed and optimization search accuracy. Experimental results
show that the proposed approach can effectively enhance grid frequency support capability and improve the
annualized net return of energy storage.
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Fig.1  The control structure of BES participating in

primary frequency regulation of power grid
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