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计及碳排放的电动汽车充电站优化定价策略

尹力 1，盛俊杰 1，袁杰 1，冯燕钧 2
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摘要：在碳中和背景下，提出了一种计及碳排放的电动汽车充电站优化定价策略。首先，构建电动汽车用

户价格响应特性模型；其次，建立以碳排放最低、负荷峰谷差最小以及充电站收益最高为目标的定价优化模型

并将其转化为马尔科夫决策过程；然后，提出一种基于时间差分误差的改进近端策略优化算法，以提高算法的

效率与稳定性；最后，通过算例分析表明，所提定价策略能够降低配电网负荷峰谷差，提高充电站经济效益与

低碳水平。
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Optimal Pricing Strategy of Electric Vehicle Charging Stations Considering Carbon Emissions
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Abstract：In the context of carbon neutrality，an optimal pricing strategy for electric vehicle charging stations

considering carbon emissions was proposed. Firstly，a price response characteristic model of electric vehicle users

was constructed. Secondly，an optimal pricing model with the lowest carbon emission，the minimum load peak-

valley difference and the highest charging station revenue as the objectives was established and transformed into a

Markov decision process. Then，an improved proximal policy optimization（PPO）algorithm based on the time

difference error was proposed to improve the efficiency and stability of the algorithm. Finally，the example analysis

shows that the proposed pricing strategy can reduce the peak-valley difference of distribution network load and

improve the economic benefit and low carbon level of charging station.
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电动汽车保有量的持续增长给电网与充电

站的经济、安全运行带来了挑战[1-2]，用户在晚间

的聚集充电行为将引起负荷“峰上加峰”问题，如

何引导电动汽车群体的充电行为成为了当前的

热点问题[3-5]。
目前，国内外学者开展了大量基于电价引导

电动汽车充电行为的研究。文献[6]提出了一种

双层充电定价策略，其中，上层基于K-means聚类

算法划分电价的峰谷平时段，下层基于快速非支

配排序遗传算法制定电价以提高充电站利润。

然而，该模型仅能提供帕累托解集，在实际应用

中需要人工决策的介入。文献[7]从充电站-用户

主从博弈的角度，建立了充电站实时定价模型，

并基于遗传算法进行寻优求解，以提高充电站调

峰效果与售电利润。文献[8]考虑可再生能源与

储能系统的影响，提出了基于随机动态规划和贪

婪算法的充电定价策略以减少对电网影响，并提

高充电站利润与客户满意度。文献[9]针对电动

出租车建立了充电引导及定价策略，在实时更新

电动出租车的状态并预测充电需求的基础上，通

过制定充电电价以提高充电站设备利用效率。

为了提高电动汽车充电引导的实时性与鲁
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棒性，部分学者探究了深度强化学习算法在充电

定价引导领域的应用[10-11]。文献[12]采用 Logistic
函数刻画用户在电价响应下的负荷转移，并基于

深度确定性策略梯度函数（deep deterministic poli-
cy gradient，DDPG）进行充电引导以减小净负荷

峰谷差。为了提高用户经济收益，文献[13]基于

多智能体DDPG算法控制车辆在不同电价下的充

放电功率。文献[14]则建立了一种基于深度强化

学习的动态定价模型，将电动汽车充电行为建立

为马尔科夫决策过程（Markov decision process，
MDP），并依据充电站到达率与排队容量制定实

时电价。然而，该模型仅考虑了充电站方面的信

息，缺少对配电网信息的综合感知。

基于上述分析，本文构建了一种基于深度强

化学习的充电站优化定价策略以提高充电站收

益并降低碳排放与负荷峰谷差。在此基础上，提

出一种基于时间差分误差（time difference error，
TD-error）的改进近端策略优化（proximal policy
optimization，PPO）算法进行模型的离线训练与在

线求解，以提高算法的训练效率与收敛稳定性，

最后基于算例仿真对所提策略的有效性进行验证。

1 电动汽车用户价格响应特性

电动汽车用户前往充电站补充电能的本质

是一种服务/商品购买行为，而影响用户消费行为

的最主要因素即为价格。在面对较小的价格差

距时，用户往往存在一个心理阈值，当价格差低

于该阈值时，用户基本不会做出响应；当超过该

阈值时，用户的响应意愿随着价格刺激而增大；

当价格差值达到饱和阈值后，用户响应意愿不会

随之增大，而是达到了响应极限期。基于此，本

文建立考虑死区的电动汽车用户价格响应模型

如下式所示：

μ =
ì

í

î

ï
ï
ï
ï

0                       Δλ ≤ Δλ1
μmax (Δλ - Δλ1 )
Δλ2 - Δλ1    Δλ1 < Δλ < Δλ2

μmax                    Δλ ≥ Δλ2
（1）

式中：μ为电动汽车用户响应意愿；μmax为最大响

应意愿；Δλ为充电站新的分时电价与原电价的

价格差，元/（kW·h）；Δλ1，Δλ2分别为死区阈值与

饱和阈值。

基于式（1）可以得到电动汽车用户充电电价

响应特性示意图如图 1所示。可见，当价格差Δλ
小于死区阈值Δλ1时，用户将不会做出响应，仍按

照原充电计划前往目标充电站充电；当价格差

Δλ处于线性区时，Δλ越大，用户响应意愿越强

烈，更愿意前往价格低的充电站进行充电；当价

格差Δλ大于饱和阈值Δλ2时，用户的响应意愿达

到最大值μmax。

图1 电动汽车用户充电电价响应特性图

Fig.1 Response characteristics of charging electricity
prices for electric vehicle users

2 计及碳减排的电动汽车充电站协

调定价模型

为充分发挥电动汽车的碳减排效益并提高

配电网的低碳化水平，本文将电动汽车碳排放最

小、配电网负荷峰谷差最小以及充电站收益最大

设为优化目标，建立计及碳减排的电动汽车充电

站协调定价模型。同时，考虑到实际工况可能遇

到的随机干扰与实时性问题，本文进一步将该优

化模型转换为MDP模型，便于后续深度强化学习

算法的训练求解。

2.1 计及碳减排的充电站定价模型

2.1.1 目标函数

1）电动汽车碳排放最小。考虑电网在不同

时段的碳排放因子以及电动汽车群体的移动储

能特性，通过合理的定价策略能够调整区域充电

负荷时空分布，从而降低电动汽车群体充电行为

所带来的碳排放量，如下式所示：

minf1 =∑
t = 1

T

γCO2
t P EV

t Δt （2）
式中：T为一天总时间段；γCO2

t 为电网在 t时段的碳

排放因子，kg/（kW·h）；P EV
t 为不同时刻电动汽车

总充电负荷；Δt为时间步长。

2）配电网负荷峰谷差最小。所提协调定价

策略的主要目的之一是平滑负荷曲线，提高电网

削峰填谷能力，因此将下式所示的负荷峰谷差最

小设为子目标函数：
minf2 = P DNmax - P DNmin （3）

式中：P DNmax，P DNmin分别为配电网负荷峰值与谷值。

3）充电站收益最高。充电站依靠从电网购

电并向电动汽车用户售电盈利，因而优化策略应
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保证充电站收益不低于实施分时电价前的收益，

并尽可能提高充电站收益水平，如下式所示：

maxf3 =∑
t = 1

T∑
i = 1

N (λCSi,t - λTOUt )P CS
i,t Δt （4）

式中：N为充电站数量；λTOUt 为工业分时电价；λCSi,t
为充电站 i在 t时段的充电电价；P CS

i,t 为充电站 i在
t时段的充电负荷大小。

2.1.2 约束条件

1）配电网潮流约束如下：

-P CS
i,t - P L

i,t = Vi,t∑
j ∈ i
Vj,t (Gijcosθij,t + Bijsinθij,t ) （5）

-QCS
i,t - QL

i,t = Vi,t∑
j ∈ i
Vj,t (Gijsinθij,t - Bijcosθij,t ) （6）

式中：P L
i,t，Q

L
i,t分别为配电网的有功与无功负荷；

P CS
i,t ，Q

CS
i,t 分别为充电站的有功与无功负荷；Vi,t为

节点电压；Gij，Bij分别为支路 i-j的电导与电纳；θij,t
为相角差。

2）线路安全约束如下：

Vi,min ≤ Vi,t ≤ Vi,max （7）
Iij,min ≤ Iij,t ≤ Iij,max （8）
Pij,min ≤ Pij,t ≤ Pij,max （9）
Qij,min ≤ Qij,t ≤ Qij,max （10）

式中：Vi,max，Vi,min分别为节点电压上、下限；Iij,t为支

路电流；Iij,max，Iij,min分别为支路电流上、下限；Pij,t为

支路有功功率；Pij,max，Pij,min分别为支路有功功率

上、下限；Qij,t为支路无功功率；Qij,max，Qij,min分别为

支路无功功率上、下限。

3）充电站定价约束如下：

λTOUt < λCSi,t ≤ χλTOUt （11）
式中：χ为定价限幅系数。

4）充电站收益约束如下：

∑
t = 1

T∑
i = 1

N

ϑCS
i,t ≥∑

t = 1

T∑
i = 1

N

ϑ͂CS
i,t （12）

式中：ϑCS
i,t，ϑ͂CS

i,t 分别为实施所提分时电价之后与之

前的充电站收益。

2.2 基于MDP的充电站协调定价策略

深度强化学习智能体与环境交互架构如图 2
所示。作为一种基于 Actor-Critic架构的深度强

化学习算法，PPO智能体从配电网环境中观测实

时状态 st并基于Actor网络做出实时决策动作 at，
在执行动作 at后智能体将得到即时奖励 rt。通过

上述交互不断累积历史样本并更新网络参数，最

终帮助智能体学习到环境状态-最优动作的映射

关系。

图2 深度强化学习智能体与环境交互架构

Fig.2 Architecture of deep reinforcement learning
agent and environment interaction

1）状态。状态代表智能体对环境实时信息

的感知，用以辅助智能体决策。在本文中，环境

状态由配电网与充电站两方面组成，如下式所示：

st = { P L
i,t,γCO2t

DN
, P CS

j,t ,λCSj,t - 1
CS

} （13）
2）动作。动作代表智能体依据环境信息做

出的决策方案，即确定各充电站实时电价。

at = { }λCSj,t （14）
3）奖励。奖励是在执行动作 at后环境给予

的实时反馈，用以引导智能体学习更优秀的决策

方案。奖励 rt由碳排放成本 r CO2
t 、负荷峰谷差惩罚

r DNt 以及充电站收益奖励 r CSt 3项组成，如下式所示：

rt = r CO2
t + r DNt + r CSt （15）

其中

r CO2
t = -λCO2γCO2

t P EV
t Δt （16）

r DNt = {-λPD (P DNmax - P DNmin )    st为终点  
0                        otherwise （17）
r CSt =∑

i = 1

N (λCSi,t - λTOUt )P CS
i,t Δt （18）

式中：λCO2为碳排放成本系数，元/kg；λPD为峰谷差

惩罚系数，元/MW。

4）状态转移概率。设 t时刻的环境状态为 st，
执行动作 at后进入 t+1时刻，环境状态会随之转

移到 st + 1，这一过程可由状态转移概率函数Ψ表

示，如下式所示：
st + 1 = Ψ ( st,at ) （19）

在实际应用中这一转移过程常伴随着实时

随机干扰，转移模型是无法精确量化的。为此，

本文引入深度强化学习算法，其不依赖于特定的

系统物理转移模型，而是基于大量训练与探索过

程来学习环境的概率转移模型。
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3 改进深度强化学习PPO算法

作为信赖域策略优化（trust region policy opti⁃
mization，TRPO）的改进算法，PPO算法通过约束

策略更新的幅度从而保证其训练稳定性[15-16]。然

而，该方法忽略了不同样本的重要性区别，在实

际训练中存在未充分挖掘样本价值与训练效率

低的问题，无法有效平衡算法的稳定性与训练速

度。为此，本文提出了一种基于时间差分误差的

改进PPO算法，基于样本偏差动态调整PPO算法

裁减率，提高算法的效率与稳定性。

3.1 PPO算法基本原理

在 PPO算法中，t时刻的优势函数 Ât (a,s )如
下式所示：

Ât (a,s ) = -Vϕ ( st ) + rt + γrt + 1 + ⋯ +
γK - t + 1rK - 1 + γK - tVϕ ( sK ) （20）

式中：Vϕ ( st )为状态价值函数；γ为折旧率；K为视

野步长。

在式（20）的基础上，PPO算法的训练目标 L
可表述为获得能使期望优势函数最大的智能体

网络参数，如下式所示：

L = max
θ
Et [ πθk + 1 (a|s )

πθk (a|s ) Ât (a,s ) ]
   = max

θ
Et [ τt Ât (a,s ) ] （21）

式中：πθk为策略函数；τt为新旧策略比率。

为了保证训练稳定性，PPO算法对 τt进行了

限幅以保证其大小在 [1 - ε,1 + ε ]范围内，而目

标函数可改为下式：

Lclip = maxEt [ min (τt Ât,clip (τt ) Ât ) ] （22）
其中

clip (τt ) =
ì
í
î

ï

ï

1 - ε   τt < 1 - ε
τt        1 - ε ≤ τt ≤ 1 + ε1 + ε    τt > 1 + ε

（23）
式中：ε为裁减率。

3.2 PPO算法改进策略

本文所提改进 PPO算法的核心思想是基于

样本的优劣动态调整裁减率 ε，从而平衡算法面

对不同样本下的训练速度与稳定性。所提方法

如图 3所示，当样本 TD-error较大时，意味着当前

策略效果较差，该样本能够提供较高的经验贡

献，因此设置较大的裁减率以提高算法更新幅度

与训练效率，寻找更优秀的策略；反之，意味着当

前策略已较为优秀，因此应减小裁减率以保证收

敛稳定性。其中，动态裁减率可由下式计算得到：

其中 ε = {εmax    δt ≥ δ̄ tεmin    δt < δ̄ t （24）
δt = rt + γVϕ ( st + 1 ) - Vϕ ( st ) （25）

式中：εmax，εmin分别为最大、最小裁减率；δt为时间

差分误差；δ̄ t为时间差分误差的均值。

图3 动态调整裁减率示意图

Fig.3 Schematic of dynamic adjustment of clip ratio
3.3 改进PPO算法的训练流程

所提改进PPO算法训练流程如图 4所示。在

初始化训练环境后，首先对配电网与充电站实时

状态 st进行观察，并做出动作决策 at；其次，计算

图4 改进PPO算法的训练流程图

Fig.4 Training flowchart of the improved PPO algorithm
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所得奖励 rt 并将样本 ( st,at,rt,st + 1 )存放至经验池

中；然后，计算样本的 TD-error，基于所提方法动

态调整裁减率 ε，并更新智能体网络参数；最后，

重复上述步骤直至达到最大训练回合，最终输出

训练完成的智能体以供在线部署。

4 算例分析

4.1 算例仿真参数

本文在 IEEE-33节点配电网进行算例仿真，

设该区域共 6座充电站，分别接入节点 8、节点

12、节点 16、节点 20、节点 24、节点 30，且均配置

了 10根 60 kW快充桩。设仿真时间步长为 1 h，
用户最大响应意愿为 30%，死区阈值与饱和阈值

分别取0.1元/（kW·h）与1.5元/（kW·h），充电站定

价限幅系数为 2.6，碳排放成本系数为 0.05元/kg，
配电网峰谷差惩罚系数为 4 000元/MW。工业分

时电价如表 1所示，配电网负荷曲线参考文献

[17]，电网不同时段碳排放因子参考文献[18]。
表1 工业分时电价

Tab.1 Industrial time of use electricity price
时段

峰

平

谷

10：00—15：00，18：00—21：00
07：00—10：00，15：00—18：00，21：00—23：00

00：00—07：00，23：00—24：00

电价/[元/（kW·h-1）]
1.025
0.615
0.305

4.2 离线训练过程

设算法的折扣率为 0.98，mini-batch容量为

100，经验池容量为 2 000，最大与最小裁减率分

别为 0.25与 0.1，可得智能体离线训练奖励曲线

如图 5所示。由图可见，尽管前期智能体所获得

的奖励较低，但得益于所提改进机制以较大的裁

减率提高算法更新幅度与训练效率，智能体前期

奖励波动式上升。在 400回合之后，智能体奖励

曲线逐渐收敛，此阶段裁减率较小，以提高算法

的后期稳定性。最终，智能体奖励收敛于-120.76
附近，证明其学习到了最优的决策网络参数。

4.3 策略有效性分析

将离线训练后的智能体进行在线测试，可得

优化定价前、后各充电站负荷空间分布与配电网

负荷时间分布分别如图6与图7所示。

图6 优化定价前后各充电站负荷

Fig.6 Charging load of each charging station
before and after optimizing pricing

图7 优化定价前、后配电网负荷

Fig.7 Distribution network load before and after optimizing pricing
由图 6可见智能体的定价策略有效平衡了充

电负荷的空间分布，各充电站间负荷标准差仅为

271.97 kW·h，相较于优化定价前降低了 39.89%，

有效缓解了部分充电站充电拥堵的情况，提高了

充电设施网络整体利用率。由图 7可知，在时间

分布上由于电动汽车在晚间负荷峰值期间的聚

集充电行为，优化定价前配电网峰谷差增大，达

4.10 MW，而所提方法通过电价引导用户充电行

为参与削峰填谷，负荷峰谷差仅为 3.21 MW，相较

于前者降低了 21.71%，提高了配电网的稳定性和

经济性。可见，所提方法能够综合感知环境信息

并输出定价策略，通过空间上的充电站电价差与

时间上的不同时段电价差能够有效引导充电负
图5 智能体离线训练奖励曲线

Fig.5 Reward curve for offline training of the agent
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荷实时响应。

为进一步分析所提策略的碳减排效益，表 2
给出了优化定价前、后的算例结果，图 8则给出了

全天不同时段碳排放成本曲线。由表 2可见，优

化定价后充电站收益为 10 851.92元，较优化定价

前提高了 16.78%。同时，结合图 8可见所提方法

有效缓解了由电动汽车充电带来的碳排放问题，

尤其在晚间负荷高峰时段。全天碳排放成本仅

为 754.74元，较优化定价前降低了 16.44%。综上

所述，所提协调定价策略能够有效引导电动汽车

充电负荷的时间-空间转移，在保证充电站收益

的基础上降低配电网峰谷差与碳排放成本。
表2 优化定价前、后的算例结果

Tab.2 Case study results before and after optimizing pricing

碳排放成本/元
配电网峰谷差/MW
充电站收益/元

优化定价前

903.24
4.10

9 292.71

优化定价后

754.74
3.21

10 851.92

图8 优化定价前、后碳排放成本

Fig.8 Carbon emission cost before and after optimizing pricing
4.4 不同算法对比

为验证所提 PPO算法改进策略的有效性，将

DDPG算法、PPO算法与所提改进 PPO算法进行

训练对比，可得不同算法的训练奖励曲线与配电

网电压幅值对比分别如图 9与图 10所示。由图 9
可见，PPO算法在约 580回合实现收敛，但训练后

期稳定性较差，平均奖励约为-131.52。DDPG算

法收敛速度较快，但后期平均奖励较低，仅为

-146.87，意味着算法的综合寻优能力较差。而所

提改进 PPO算法基于样本的优劣动态调整裁减

率，使得智能体能够在训练前期提高更新幅度与

训练效率，同时在训练后期保证收敛稳定性，平

均奖励相较于 PPO算法提升了 8.18%。此外，由

晚间用电高峰期的电压曲线可见，优化前各节点

电压分布显著不均且存在电压越限，最低电压为

0.903（标幺值），电压合格率仅为 70.97%。所提

算法通过充电定价策略引导用户充电行为的时

空转移，显著抑制了电压越限情况。

图9 不同深度强化学习算法训练曲线对比

Fig.9 Comparison of training curves for different
deep reinforcement learning algorithms

图10 配电网在20：00时刻的节点电压幅值对比

Fig.10 Comparison of node voltage amplitudes of
distribution networks at 20：00

4.5 模型敏感性分析

最后，为分析超参数裁减率的设置对模型性

能的影响，图 11给出了不同最大与最小裁减率下

智能体所得收敛奖励对比。

图11 不同最大与最小裁减率下算法奖励

Fig.11 Algorithm reward under different maximum
and minimum clip ratio
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由图 11可见，随着 εmax的增大，算法奖励整

体呈下降趋势，其取值 0.45时相较于取值 0.2时
奖励平均降低6.76%。而随着εmin的增大，模型更

新策略逐渐由保守转为激进。当 εmin增大至 0.2
时，由图中最下方曲线可见算法奖励偏低，这是

由于此时模型更新策略更加激进，可能破坏已验

证的优秀策略。综上，当 εmax与 εmin分别取值 0.25
与 0.1时算法奖励值最高，能够更好地权衡模型训

练效率与收敛稳定性。

5 结论

本文基于电动汽车用户的价格响应特性，建

立了计及碳排放的充电站优化定价模型，并将其

转化为了MDP过程以便所提改进 PPO算法进行

训练求解。通过算法的离线训练与在线测试，得

出如下结论：

1）构建的基于MDP的充电站协调定价策略

能够感知配电网-充电站环境状态，并基于深度

强化学习制定实时充电电价引导电动汽车用户，

有效提高了策略的实时性与鲁棒性。

2）提出的基于TD-error的改进策略有效平衡

了PPO算法的稳定性与训练速度，提高算法在应

对不同样本情况下的训练效率与稳定性。

3）算例结果表明，所提出的充电站优化定价

模型能够在降低碳排放的基础上，提高充电站收

益并降低配电网负荷峰谷差。

下一步研究将考虑区域级的规模化可再生

能源以及常规火电机组的运行特性，与电动汽车

协调互补进一步提升碳减排效益。
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