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Distribution Network Estimation Driven By Attention Mechanism for Multi-source Data Fusion
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Abstract: Aiming at the challenges of data heterogeneity and multi-source in distribution networks, a self-
supervised multi-source measurement data fusion method based on coding-decoding attention mechanism was
proposed. This method automatically captured the correlation between data through self-supervised learning, and
extracted weighted fusion features by encoding and decoding attention mechanisms to enhance the relevance,
integrity and availability of data. This method can adapt to different types of input data, thus ensuring the
realization of high-precision distribution network state estimation in multi-source data scenarios. Experimental
results on a 57-node simulation system show that the proposed method outperforms mainstream algorithms such as
GraphMDN, RetNode, AdaAtt and DR-GCN in terms of accuracy, AUC and Macro F value. Among them, the
accuracy reached 88%, the AUC increased to 76.05%, the Macro F value reached 93.02%, and the overall
performance was significantly improved. Compared with the optimal comparison algorithm, the average error is
reduced by 47%, and the maximum error is controlled within 0.017. The results verify the effectiveness and
generalization ability of the proposed method in multi-source fusion, power grid data modeling and state estimation.

Key words: multi-source data fusion; encoding-decoding attention; self-supervised learning; distribution

network state estimation

B PRR S A TR S BE IR B R e 1 QB 2
T ] M L P 8 AR A B TR
BEAPIRAS B AR L HLEY B3R5 B, B 5tk
BAb Ty 1 E A B N 3k AR /N 5k
EB PR R IR 2 38 Y (extended Kalman filter,
EKF) "0 JC i K /K 2 38 3% (unscented Kalman
filter, UKF)™/4% . X 267757 —E R L LTt T
T PR 285 Ak T (0 RS e (L LA AR 235 4 38 1

E& TR : w5 i M A AR H (GDKIXM20240450)

TR AE TR ML, XE DL 704 AR I X el 2R
P RS RN A R, DU LA IR0 SEBR T
{50 HY ) B0 S ) 5 R A i ) A R A7 PR

H AT, B L IR A T T O A0 a2k
U5 F SCADA Fl WAMS R 48, (H —F 18 RAEESIH |
YRR B AE B E AA A 2R . SCADA
RGBSR TR (B o A5 ) K
i WAMS F Gt B & s WRFEfE ), (H 2886 A

{EE R AR (1987—) , B A0, 1 @S 4 TR, = ZEF 55 7 1a) AL FL I B2 321 T, Email : 13356959297@163.com

67



WA AR 20265F 564 F 1M

BRAEAE I E AR S 69 S R AR AR AL W A

[ F S A S T /S EN R NN
W, AT A DR A 2R 9 R A mTOUL I A g B |, S
X SCADA 5 WAMS 2 5 5 1) o5 0 048 14 e 28
G W TR P e A U W [ e

E2U SRl SE PR G S NP SN S
YR R G — G, DI A B S R — 3L
ARFIER R SR, 52 BR T80 S A P SRR A
RN — B0 TOAR LA R S 25 55 ) B, A% G2 il
G072 (AN PR AL GE it FL) ) 7 52 bR sz H v
T Ife 65 M 22 A B 40 2 DR R B 3 45 55
B ITAER B TR ) R R BESE A 22K
FIAERZ B2 (GCN)P, [ WA 2 VO FITE 2 )
HILTRI e ) T i R T 32 Ak BB I T i A il AE
28, FH DA A 22 58500 ) 52 2 A I 2 RO G &%
PETHARASAG T a1 5 B e

Horr gy —fi it v 55 1 ML (encoder-decod-
er attention) {E N —Fh7E B R 1E 5 AL FRAT 55 T ™
12 B 284, B8 5 R 1 P 91 A 5 R R
REJT o o G fth A S A Jmy R AT, A A8 45 5
R R AR A B S A, AR T TR
IR B OR 5 S A R A R B . FERCHE Y
ZVREAR LI Foh R AR U HE &
FEFWAMS 5 SCADA FR G5 1] 1 3 25 SCHRRHE

BT, AR SO Y — b B T G 0 — i A 1
JIHLEN ) A W 2 IR A il T RS AR T
o I G — A A R AR N A BTN SO G
LI WE R m ARG 5 A 55 05 1 B o
THE BN SIZARE ). SR IER], Ay
BAEZ PSR bR N I TIA ik, e
PR TR M A PR A TS B SRR v

1 e = ROR S AR AR

7 & 22 5 0 BSCHE B IR R /s Al RS
it B AR sRELJ () AT ZR35 R
min J (x)=J"(x) + J™ (x) (1)
Hrp
J(x)=[2" =R () " (R")'[2" = h"(x)]
T ) =12 = B () F(RY) 2 = A (x)]
s.t.e(x)=0
A AR & (o), M (2) 4351k D-PMU
gt 5 s sREL 2", 2 S IIE A" (x) , 2™ (x)
S inil KA R R IR ZE W T 255 1 s 0 (x) A E
AL,
68

FAPE G T AR R T ey

[H'R'H ("
G‘[ C 0} @)
Hip H=[(H")" (H")]"

R = diag(R",R™)
Ao H R AEse LU R s R iR 25 W 225605, C R
TN LI HOHE 58 LEREL R
SIASEAR B H ek &, 200 Birid AR S A 3
R AL Sy

M%M:%ﬂx%h%w) (3)

A ARSI H T
R = AR R AT

H'R'H C"|[Ax] [H'R'Az
" o}{—A}‘{ —e(x) } @

Horp Az=z-h(x,)
o BB x,, Ax, 73 3RS P RAEAOIRES
ARt MRk 5 2 Ry E

2 LRHERRLSF

2.1 HEREREN

Fr PR SR T T — I T G 5 R A T
JIHLEI A [ W B 2 U5 I B il A i T RG
PRSI AR 2B A R — i
2 MRS R —A AR, Hr,
i AN T B ) E R R B A0 RS A AU
298 22 U SR B P ) B (R R TR B S5 4
TFEUNE 1 TR o AR AU Y A e 2 A 4
WAMS 5 SCADA £ 4t &I .
22 ZRERUHEME

A SO 22U S KA R Rl T 245 4 [R] 2 e
TN Gt L R Z 0 R RS . FOR
R AT IEALER R RS T

R SR 2 R SR A S IR AR, ARSI A
I TEALEI A TR R AL G, R R

GGG =8 My (FLR.T))] (5)

Fl..=G'QF +G'QR +G'®T (6)
KGN G T A G o Z IR RAET 145
R 36 R 11 HE B0 RS @ R M, 1145
A4
23 mEBEREETEAN

A 3 22 RS R A I 28 1 BRI 4% TR AT, )
JH Transformer 2 iR i g VO E — 25 2% > B0 R 8] 16 B
M ICFR o TR LR A A S



FRARAE R AR IR B) 4G B R BYE Ak A P A 3

B A AR 20265F H 564 F 1

Attention
mechanism

Encode and Decode Attention

SCADAZR%E

fellEaE

‘ Encoder

WAMS # 48

EelEs €

FFN FI—N 1
1
Fig.1  Model

()l A5 HF A 1 5 LD R 7
B2 ZRESRHIERL A P45 H s A

Fig.2  Schematic diagram of the multi-modal

feature fusion network structure
AFARLEE DA 3 Be v 3 AR, JF X ) 5 24 T AL
SROFAAE R o, BTN

Attention (Q,K,V ) = softmax (

T

QK W
d

(7)

QK MV ARSERS , BRZ A A R IIHLH
A AR 22 YRR SCHK , R 22 3k R I Bl
il HA S

MuliHeadAttention (Q,K,V )= Concat (h,,h,, - ,h,)W*
(8)

Herp
h; = Attention (QW ! KW VW) (9)

A WO W W5 D A ) B R L A e 4
ISR s WO Ol 22 3 TE 1 P B X R P
B SRR,

Analysis

Decoder results

FY F

WSS U ]

"
—
structure flowchart

3 R 1 AR SC T B4 il v 7 2 ST AL
i AT AT I A5 gl 1 3 7 AR T I 2 R
W MR R R A
M7 AT, 0 PG T I 25 R AE [ R A A7 B Y
HEEREZEO(TxHX W), [, 25 E T
PR IS Wk AT RO B 4 )R BT RE ), il v R
T 2, TR R,

z}i-_, = softmax ( . W, (10)
K!

sz = softmax ( 922 W, (11)
K7

z?m = softmax ( 925 W, (12)

Zin = zil./.,t + ziz,j,t + z?.j,t (13)

X eq, AR K, VieR,, 9T T 10 i
{EAE IS 5 K, , VoeRy,, R 7KF-J5 T BB AR 5 K, Ve
R oA I ] 5 1) B ELRE G

Vertical latitudinal
attention

Time direetional
attention

______________

Horizontal warp
L directional attention

{3 EEHLHIAH

Fig.3  Attention mechanism structure

Gt 45 b 22> AH ) 10 J2 o 8 T, 4 BT 4
ANy S A TR DR SR e AN TS R
Leaky ReLU i PRELAL AL . b 1 i R0 H2axX 4k
BRI, I 12 At 4R B d o Horp 8]
4 iR 3 (8] - I 8] Al ) 8 0 B TR 3 TR
bl . BARA R

69



WA AR 20265F 564 F 1M

ERARAE 3 R R A AUEN IR ) 89 S R AL G kb BT W AL 3

y = softmax [ W mean(z,;

)b (14)

" MJ
z Zz z'
5
/ Residuals and
normalization
Convolutional
feedforward networks

Residuals and
normalization

\

/ Encoder \
—]

Residuals and
normalization

Convolutional Spatio-temporal
feedforward networks axial attention

Residuals and

Residuals and
normalization

normalization

T

Spatio-temporal Mask Spatio-temporal
axial attention K axial attention /
w ¥
|

N
EE--
F F)

4 it s FOARAD AR S
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