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多源量测数据下基于自适应EKF的动态状态

估计方法
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摘要：在配电网多源量测体系中，多源量测设备的采样频率和时间戳不同步，以及系统中的不良数据，都

将导致量测数据间存在偏差，从而影响状态估计的准确性。为此，提出了一种多源量测数据下基于自适应扩

展卡尔曼滤波（EKF）的动态状态估计方法。首先，针对多源量测数据的非同步问题，提出了一种基于动态时

间规整（DTW）的多源数据时间戳对齐策略，实现量测数据的同步。其次，针对系统中的不良数据，提出了一种

集成不良数据自适应检测和滤除环节的 EKF状态估计方法，降低了不良数据对状态估计的影响。最后，在

IEEE 33节点系统中进行算例测试，并与未考虑多源量测数据融合和异常值检测的传统EKF方法进行比较。

结果表明，所提方法提高了估计结果的鲁棒性和可靠性。
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QI Zhenbiao1，BAO Yuying2，FAN Shen1，PAN Min1，HU Pengfei3，WU Hongbin3

（1.State Grid Anhui Electric Power Co.，Ltd.，Hefei 230022，Anhui，China；2.Economic and Technological

Research Institute of State Grid Anhui Electric Power Co.，Ltd.，Hefei 230022，Anhui，China；3.School of

Electrical Engineering and Automation，Hefei University of Technology，Hefei 230009，Anhui，China）

Abstract：In the multi-source measurement system of distribution network，the sampling frequency and time

stamp of multi-source measurement equipment are not synchronized，as well as the bad data in the system，which

will lead to the bias among the measurement data，thus affecting the accuracy of state estimation. To this end，a

dynamic state estimation method based on adaptive extended Kalman filtering（EKF） under multi-source

measurement data was proposed. Firstly，to address the non-synchronization problem of multi-source measurement

data，a multi-source data timestamp alignment strategy based on dynamic time warping（DTW）was proposed to

realize the synchronization of measurement data. Secondly，for the bad data in the system，an EKF state estimation

method integrating the bad data adaptive detection and filtering link was proposed to overcome the effect of bad

data on state estimation. Finally，an arithmetic test was performed in an IEEE 33 node system and compared with a

conventional EKF method that did not consider the fusion of multi-source metrology data and outlier detection. The

results show that the proposed method improves the robustness and reliability of the estimation results.

Key words：distribution network；state estimation；multi-source data fusion；bad data detection；Kalman

filtering（KF）

配电网是电力系统连接发电侧和用户侧的

关键环节，其运行效率直接关系到电力供应的质

量和稳定性。在现代智能电网中，配电网的作用

不仅限于电能分配，还通过集成先进的测量和通

信技术实现了对网络运行状态的实时监测和智

能调控。随着可再生能源和分布式发电的快速
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发展，配电网的负荷特性和网络结构变得更加复

杂，对状态估计的精度和实时性提出了更高要

求。因此，研究提升配电网状态估计性能的方

法，对于支持智能电网的高效运行和优化管理具

有重要的现实意义[1]。配电系统状态估计（distri⁃
bution system state estimation，DSSE）技术利用网

络模型和可用的测量数据来推断系统状态。然

而，由于中低压馈线的测量设备数量有限，配电

系统往往面临不可观测的问题，这对DSSE的研

发和应用造成了障碍[2]。近年来，各种测量传感

器的安装显著增加，特别是在配电系统的二次

侧，智能电表被广泛部署，并通常以 15 min为间

隔进行数据采集，以用于用户计费。这些智能电

表的聚合测量值为主馈线的负载组成提供了关

键数据，进而增加了配电系统的数据冗余[3]。此

外，微型同步相量测量装置（distribution-level pha⁃
sor measurement unit，D-PMU）、数据采集与监控

（supervisory control and data acquisition，SCADA）
系统和高级量测体系（advanced metering infra⁃
structure，AMI）的部署也在不断扩大[4]。除了这些

传感器和仪表外，还可以定期获取来自分布式发

电（distributed generation，DG）设备的监测数据，

而配电管理系统（distribution management system，

DMS）则能够访问负载和DG的每日预测数据[5]。
随着智能电网技术的发展，配电系统中部署

了越来越多的传感器和智能设备，这些设备生成

大量实时数据。然而，这些数据中可能存在错

误、缺失或不一致性，导致决策失误和系统性能

下降[6-7]。不良数据不仅影响状态估计和故障检

测的准确性，还可能引发严重的安全隐患。关键

挑战是协调多个时间序列与嘈杂、异构、不完整

和不均匀采样的数据，并估计配电系统的状态。

在多源量测环境下的DSSE研究中，文献[8]
集中于使用基于线性插值/外推的加权最小二乘

（weighted least squares，WLS）方法来协调两个时

间尺度测量值。但是，这种方法没有利用时间序

列数据中任何潜在的时空关系。文献[9]解决了

DSSE智能电表测量的异步性问题。文献[10]提
出了一种卡尔曼滤波（Kalman filtering，KF）方法

来处理不规则传感器采样的问题。文献[11-12]
提出了一种用于协调异构测量值的多任务高斯

过程（Gaussian process，GP）框架。该框架使用所

有测量值的同时进行插补。也就是说，其提出的

方法涉及批处理，不能用于在测量值到达时实时

进行插补。文献[13]提出了一种适用于配电网的

三相解耦状态估计算法。该方法通过对量测量

进行混合变换，避免了传统电流量测变换所导致

的误差。文献[14]通过根据测量误差方差分配权

重矩阵、根据状态变量变换测量值来解决多源量

测数据的精度和形式差异，提高了估计精度和计

算效率。在不良数据检测和抑制方面，文献[15]
基于配电网的网孔对其支路进行编码，构建独立

回路矩阵。通过自动判断连支的测量值，利用简

化蚁群算法生成新树，从而实现对配电网络中不

良数据的高效检测与识别。文献[16]提出了一种

新的网络搜索方法，该方法考虑了不同的测量精

度和方向。通过电压一致性检测、PMU/SCADA
一致性检测、KCL一致性检测以及KVL一致性检

测，成功实现了不良数据的识别。

针对上述问题，本文考虑多源量测环境提出

了一种计及多源量测数据的配电网动态状态估

计方法。首先，提出了基于动态时间规整（dy⁃
namic time warping，DTW）的多源数据时间戳对齐

和融合策略，解决多源量测数据时延问题。此

外，为了克服异常值对于状态估计的影响，提出

一种基于自适应EKF的DSSE算法。通过建立自

适应检测阈值对测量数据进行自适应预筛选，以

滤除测量中的不良数据；最后，根据筛选后的测

量数据进行状态估计，降低不良数据对状态估计

的影响。

1 多源量测数据融合

1.1 多源量测数据时间戳对齐

1.1.1 对齐基准

由于具备外置 GPS接收装置和内置脉冲每

秒同步时钟接收模块，D-PMU能够精确同步测量

电压和电流相量，定时精度在 50 μs以内。此外，

D-PMU的采样周期为毫秒级，在采集过程中包含

精确的时间尺度信息[17]。因此，选择D-PMU测量

作为基准，并根据D-PMU时间尺度对 SCADA和

AMI测量进行对齐。

1.1.2 SCADA量测对齐

SCADA量测数据仅具有到达主站时的时间

戳，而缺乏数据采样时刻的时间戳。SCADA量测

装置采集数据类型主要包括支路功率、电压、电

流幅值，考虑到 SCADA采集的支路电流幅值与

D-PMU采集的电流幅值量测呈线性关系[18]，引入

DTW对齐不同时间序列的SCADA与D-PMU测量
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数据。DTW是一种用于对齐不同时间序列的算

法，特别适用于处理不规则时间间隔和动态变化

的数据[19]。通过计算 SCADA和D-PMU数据之间

的欧氏距离矩阵。利用动态规划算法找到最优

对齐路径，最小化时间序列之间的累积距离。根

据最优路径对齐 SCADA数据和D-PMU数据。由

于多个 SCADA测量设备之间的采集时间不同

步，因此必须单独对每个 SCADA测量设备采集

的数据进行对齐。

步骤 1：数据预处理。假设 SCADA数据和D-

PMU数据的采集率分别为 fs和 fp。在量测时间窗

口 Tw内，主站接收到 SCADA和D-PMU的电气参

数（电流幅值）序列分别为 Zs = [ zs,1,zs,2,…,zs,n ]和
Zp = [ zp,1,zp,2,…,zp,m ]，其中n = Tw fs，m = Tw fp。

步骤 2：构建 SCADA数据和D-PMU数据之间

的成本矩阵D，其表达式如下：

D ( i,j ) = zs,i - zp,j （1）
式中：zs,i，zp,j分别为量测时间窗口 Tw内 SCADA和

D-PMU量测序列的第 i和第 j个量测数据。

步骤 3：计算累积距离矩阵。基于成本矩阵，

计算累积距离矩阵G，其计算公式如下：
G ( i, j ) = D ( i, j ) + min {G ( i - 1, j ),

G ( i, j - 1 ),G ( i - 1, j - 1 ) } （2）
式中：G ( i, j )为累积距离矩阵G中的元素。

步骤 4：寻找最优路径。从累积距离矩阵 G

的右下角G (n,m )开始，沿着最小累积成本的方向

回溯到左上角 G (1,1 )，找到最优路径W。具体回

溯规则如下：

1）从 G (n,m )开始，记录当前位置 ( i,j )，并将

它加入路径W。

2）对当前位置的 3个邻居 ( i- 1, j )，( i, j - 1 )，
( i- 1, j - 1 )，检 查 其 对 应 位 置 的 值 G ( i- 1, j )，
G ( i, j - 1 )，G ( i- 1, j - 1 )。选择其中最小的一个

值，并将其对应的位置作为下一步的回溯位置。

3）重复2），直到到达左上角（1，1）。

步骤 5：对齐和同步数据。根据最优路径

W = [ ( i1, j1 ), ( i2, j2 ),…, ( ik, jk ) ]对齐和同步 SCADA
和 PMU数据，并将 PMU的时间戳赋予对应的

SCADA数据。具体同步规则如下：

1）对每个 SCADA数据点 zs,i，根据路径W找

到与之对齐的PMU数据点 zp,j。
2）对每个 SCADA数据点 zs,i，将路径W中与

其对齐的PMU数据点的时间戳赋值给它。

利用DTW对齐不同时间序列的SCADA与D-

PMU测量数据的流程如图1所示。

图1 SCADA和D-PMU量测数据对齐流程图

Fig.1 The flow chart of SCADA and D-PMU
measurement data alignment

1.1.3 AMI测量的对齐

AMI的通信网络采用双向通信标准，主站负

责将测量信息发送给用户，用户则上传所需信息

（如用电数据）至主站。需要指出的是，AMI测量

设备内置远程校准时钟，因此上传的数据通常附

带时间戳[4]。因此，主站在接收到AMI的测量数

据后，可以直接利用这些时间戳，将数据与 D-

PMU的时间尺度进行对齐。

1.2 多源量测数据时延融合

尽管经过上述多源量测数据时间戳对齐处

理后，测量数据已与采样时间尺度对齐，但不同

于D-PMU的其他测量装置之间仍存在时间不同

步的问题。因此，有必要对混合量测数据进行融

合，以确保数据的一致性，进而提升状态估计的

精度。

1）D-PMU测量由于其误差小、采样频率高且

同步性能优异，能够作为其他测量的对齐基准，

因此可以直接用于状态估计计算。

2）与 PMU相比，SCADA的测量误差较大，因

此直接采用最近时刻的状态估计量测值作为数

据融合后的测量值。对于 t时刻状态估计的 SCA⁃
DA量测，数据融合后的量测值Z SES 为

Z SES ( t ) = Z mS ( v ) （3）
式中：v为时间 t之前的最后一个状态估计时刻；

Z mS 为时刻 v的量测值。

3）AMI测量的采样周期较长，当状态估计时

刻与采样时刻相隔较远时，直接使用上一次采样
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的测量值进行计算可能会导致较大的误差。为

了确保测量精度，在状态估计时刻之前设置一个

时间窗（Tw），作为伪测量的预测区间。时刻 t的
AMI测量融合值表示为

Z SEA ( t ) = ìí
î

Z MA ( tA,pre ) tA,pre ∈ [ t - Tw ,t ]
ZPre ( t ) tA,pre ∈ [ tpre,t - Tw ] （4）

式中：Z MA 为AMI量测融合值；tA,pre为AMI在 t之前

的最后一个采集时刻；ZPre ( t )为 t时刻的伪量测预

测值；tpre为上一次状态估计时刻。

2 考虑不良数据的自适应EKF
2.1 多源量测变换

状态估计是根据测量数据计算状态变量的

过程，测量值与状态变量之间的关系可以表示为

z0 = h (x ) + ε0 （5）
式中：z0为原始量测向量；x为状态向量；h ( ⋅ )为量

测向量 z0和状态向量 x之间的非线性关系；ε0为
原始量测误差向量。

本文选取节点电压相量的实部和虚部作为

状态变量，表示为

x = [ e, f ] Τ （6）
式中：e，f分别为节点电压向量的实部向量和虚

部向量。

原始量测向量 z0可以表示为

z0 = [U,θ,Ib,θb,Pb,Qb,P in,Q in ]Τ （7）
式中：U，θ分别为节点电压幅值和相角向量；Ib，θb
分别为支路电流幅值和相角向量；Pb，Qb分别为

支路有功功率和无功功率向量；P in，Q in分别为节

点注入有功功率和无功功率向量。

多种类型的量测设备提供了原始量测向量

z0，但这些设备在数据形式、采样频率和量测延时

方面存在显著差异。如果不对混合量测数据在

计算前进行线性化处理，将会导致量测函数的复

杂度增加，计算时间延长，最终影响状态估计的

效率与准确性。因此，需要将多源量测数据统一

转换为等效的支路电流（实部/虚部）、节点注入电

流（实部/虚部）以及节点电压（实部/虚部），并根

据测量不确定度传播理论来计算转换后的等效

量测误差[20]。
1）D-PMU测量的节点电压相量转换为等效

的电压实部和虚部形式，计算公式为

ì
í
î

em,i = Uicos(θi )
fm,i = Uisin (θi ) （8）

式中：Ui，θi分别为节点 i电压的幅值和相角量测；

em,i，fm,i分别为节点 i电压的等效实部和虚部量测。

2）D-PMU测量的支路电流相量转换为等效

的电流实部和虚部形式，计算公式为

ì
í
î

I reb,ij = Ib,ijcos(θb,ij )
I imb,ij = Ib,ijsin (θb,ij ) （9）

式中：Ib,ij，θb,ij分别为支路 ij电压的幅值量测和相

角量测。

3）SCADA测量的支路潮流转换为等效支路

电流的实部和虚部，计算公式为

ì

í

î

ï
ï
ï
ï

I reb,ik = Pb,ik e ic,i + Qb,ik f ic,i
e2ic,i + f 2ic,i

I imb,ik = Pb,ik f ic,i - Qb,ik e ic,i
e2ic,i + f 2ic,i

（10）

式中：Pb,ik，Qb,ik分别为支路 ik的有功功率和无功

功率；I reb,ik，I imb,ik分别为流过支路 ik的等效电流的实

部和虚部；e ic,i，f ic,i分别为迭代计算过程中节点 i处
电压相量的实部和虚部。

4）伪测量和虚拟测量的节点功率注入转换

为等效节点注入电流的实部和虚部，计算公式为

ì

í

î

ï
ï
ï
ï

I rein,i = P in,i e ic,i + Q in,i f ic,i
e2ic,i + f 2ic,i

I imin,i = P in,i f ic,i - Q in,i e ic,i
e2ic,i + f 2ic,i

（11）

式中：P in,i，Q in,i分别为节点 i的有功和无功注入功

率；I rein,i，I imin,i分别为注入节点 i的等效电流的实部和

虚部。

经过上述量测变换后，量测数据由原始集 z0

转换为如下向量：

z = [ ]em,fm,I reb ,I imb ,I rein ,I imin Τ
（12）

式中：em，fm分别为电压相量测量的实部和虚部向

量；I reb ，I imb 分别为等效支路电流相量测量的实部

和虚部向量；I rein，I imin 分别为等效注入电流相量测

量的实部和虚部向量。

考虑到大部分配电网线路较短，其地面导纳

可以忽略不计，根据基尔霍夫定律，配电网支路

电流相量与节点电压相量的关系可表示为

İ = U̇ × Y （13）
式中：İ为支路电流相量；U̇为节点电压相量；Y为

支路导纳矩阵，其元素为 Yik = Gik + jBik，Gik，Bik分

别为支路 ik的电导和电纳。

将测量值从 z0变换到 z后，测量向量与状态

向量之间的关系为线性形式。这种线性使得量
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测向量对状态向量求偏导的雅可比矩阵H为一

个常数矩阵，其元素来自 z和 x之间的关联。根据

基尔霍夫定律，z和 x元素之间的相关性可以通过

以下测量函数简洁地表示：

ì
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ï

ï

ï
ïïï
ï
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ï

ï

ï
ïïï
ï

em,i = ei
fm,i = fi
I reb,ik = Gik (ei - ek ) - Bik ( fi - fk )
I imb,ik = Bik (ei - ek ) + Gik ( fi - fk )
I rein,i =∑

k ∈ Ωi

(Gikek - Bik fk )
I imin,i =∑

k ∈ Ωi

(Bikek + Gik fk )

（14）

式中：ei，fi分别为节点 i处电压相量的实部和虚

部；Ωi为节点 i相邻的节点集合。

由此，在所提量测变换方法下，非线性量测

方程可转化为如下线性量测方程：

z = Hx + ε （15）
式中：ε为等效变换后的量测误差向量，变换后的

等效量测误差根据测量不确定度传播理论进行

计算[20]。
2.2 考虑不良数据检测的自适应EKF
2.2.1 状态估计模型

配电网是一个高度多维非线性系统，其交流

潮流方程呈现非线性关系[21]。状态估计的状态方

程和测量方程分别为
xk + 1 = f (xk ) + wk （16）
zk = h (xk ) + vk （17）

式中：xk，xk + 1分别为 k时刻和 k + 1时刻的状态向

量；f ( ⋅ )为状态向量 xk到 xk + 1的状态转移方程；wk

为 k时刻的过程误差向量；zk，vk分别为 k时刻的

测量向量和测量误差向量；h ( ⋅ )为状态向量 x和

测量向量 z之间的非线性关系。

假设 wk和 vk不相关并且服从零均值的高斯

白噪声，它们的误差协方差矩阵分别为Q和R。

卡尔曼滤波器是一种用于线性系统的最优

估计方法。然而，配电网是一个高度复杂的多维

非线性系统，因此选择使用 EKF进行状态估

计[22]。EKF的模型经过线性化处理，适用于该系

统的估计需求。EKF的线性化模型为

xk + 1 = Fkxk + Gk + wk （18）
zk = Hkxk + vk （19）

其中 Fk = ∂f/∂x|x = x̂k
Hk = ∂h/∂x|x = x̂k

式中：Fk为 k时刻状态方程的雅可比矩阵；Gk为 k

时刻的输入矩阵；Hk为 k时刻测量方程的雅可比

矩阵。

2.2.2 不良数据的检测和校正

不良数据会导致量测序列出现突变，使量测

值与真实值之间出现显著偏差，进而影响状态估

计结果的准确性。为解决这一问题，本文利用不

良数据与正常数据在时间上相关性较弱的特性，

引入了一种自适应检测机制，改进了 EKF算法。

通过对量测中的不良数据进行自适应在线识别

与剔除，提高了状态估计的精度。

配电网正常运行时，相邻采样时刻间的测量

值变化较小，k时刻与 k - 1时刻之间的测量值差

值的绝对值 |zk - zk - 1|仅包含噪声信号。如果测量

集中存在不良数据，则 |zk - zk - 1|除了噪声信号外，

还会包含突变信号。据此提出了一种自适应阈

值，可以在滤除测量误差影响的同时检测出不良

数据。k时刻的不良数据检测阈值 ξ̇k计算为

ξ̇k = σ
2ε,kZ avg

Lw,k
σ2
Lw,k

（20）
式中：σ2ε,k为等效测量噪声的方差；Lw为滑动窗口

的长度；Z avg
Lw,k为滑动窗口内的平均测量值；σ2

Lw,k为

滑动窗口内测量差值绝对值序列的方差。

Z avg
Lw,k和σ2

Lw,k的计算公式分别如下：

Z avg
Lw,k = 1Lw ∑i = k + 1 - Lw

k

ZLw,i （21）
σ2
Lw,k = 1

Lw - 1 ∑i = k + 2 - Lw
k (ΔZLw,i - ΔZ avg

Lw ) （22）
其中

ì

í

î

ïï
ïï

ΔZLw,i = |ZLw,i ∈ N - ZLw,i - 1 |
ΔZ avg

Lw = 1
Lw - 1 ∑i = k + 2 - Lw

k ΔZavg,i （23）

式中：ZLw,i为 i时刻的测量值；ΔZLw,i为滑动窗口内

i - 1时刻与 i时刻的测量数据之差的绝对值；Z avg
Lw

为ΔZLw,i的平均值。

式（20）~式（23）表明，当不存在不良数据时，

相邻时刻的测量差值绝对值中只含有噪声信号，

σ2
Lw 值较小，ξ̇k值较大，可以保证测量差值绝对值

在 ξ̇k以内，从而判定测量数据为良好数据。当存

在不良数据时，会产生测量差值绝对值，包括突

变和噪声信号，σ2
Lw值增大，ξ̇k值减小，导致测量差

值绝对值超过 ξ̇k，从而判定为不良数据。

滑动窗口 Lw的大小是一个关键参数。如果

滑动窗口太大，测量值的平均值可能无法反映当
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前的系统状态，尤其是在系统动态变化较快的情

况下，可能导致估计的滞后性。如果窗口太小，

平均值的计算会受到更多噪声或波动的影响，从

而降低替换坏数据的准确性。

为此，本文在滑动窗口内测量值的平均计算

中，提出加权平均法，对时间上更接近当前时刻的

数据赋予更高的权重，而对时间较远的数据赋予

较低权重。这样可以更好地反映当前系统状态，

避免使用过时数据来替换坏数据。计算公式如下：

zk + 1,j =
∑

i= k + 2 - Lw

k

wiZLw,i,j

∑
i= k + 2 - Lw

k

wi

（24）

式中：wi为与时间相关的权重。

2.2.3 状态估计过程

KF是一种递归滤波方法，旨在对动态系统的

状态进行估计。它通过结合系统模型与量测数

据，递归更新状态估计，从而提升估计的精度。

EKF是KF的扩展版本，适用于处理非线性系统。

KF的核心思想在于结合系统模型提供的先验信

息与量测数据来估计系统的当前状态。而 EKF
则通过对非线性系统模型和量测方程进行泰勒

级数展开，并忽略二次项及更高阶项，来进行状

态估计[23]。EKF算法的基本流程为

1）预测步：

x̂k|k - 1 = Fk - 1 x̂k - 1 （25）
Pk|k - 1 = Fk - 1Pk - 1F T

k - 1 + Qk - 1 （26）
2）更新步：

x̂k = x̂k|k - 1 + Kk [ zk - h ( x̂k|k - 1 ) ] （27）
Kk = Pk|k - 1H T

k (HkPk|k - 1H T
k + Rk )-1 （28）

Pk = ( I - KkHk )Pk|k - 1 （29）
式中：x̂k - 1，x̂k|k - 1分别为 k - 1时刻和 k时刻的状

态估计向量和预测状态向量；Pk|k - 1，Pk分别为 k
时刻的先验估计误差的协方差矩阵和后验估计

误差的协方差矩阵；Kk为 k时刻的卡尔曼增益。

状态和估计误差协方差矩阵的初始值分别设置

为 x̂0 = 0和P0 = I。
2.2.4 算法求解流程

自适应EKF的求解步骤总结如下：

1）初始参数设置。设置初始参数 F，Q，R，

x̂0，P0，Lw，k。
2）坏数据的自适应检测和校正。根据式

（20）~式（23）计算 k + 1时刻的坏数据自适应检

测阈值 ξ̇k + 1，并判断测量 zk + 1,j是否为坏数据，如果

不是，则不处理该测量数据；否则，根据式（24）替

换坏数据。

3）状态预测。根据预测步中的式（25）和式

（26），计算 k + 1时刻的状态预测值 x̂k + 1|k和先验

估计误差的协方差矩阵Pk + 1|k。
4）状态更新。滤除不良数据后，根据式（27）~

式（29）计算出更新后的状态估计向量 x̂k + 1和后

验估计误差的协方差矩阵Pk + 1。
自适应EKF的求解流程如图2所示。

图2 基于自适应EKF的动态状态估计模型求解流程图

Fig.2 The solving flowchart of the dynamic state estimation
model based on adaptive EKF

3 算例分析

3.1 测试系统

为了验证所提状态估计方法的有效性，基于

IEEE 33节点配电系统进行了仿真分析。IEEE
33节点配电系统单线图如图 3所示，3台DG分别

安装在 14，24，31节点上[24]。通过在真实测量值

中添加高斯噪声来获得实时量测值，其中 SCADA
数据中的支路功率服从均值为 0，标准差为 0.01
的高斯分布，D‐PMU数据服从均值为0，标准差为

0.005的高斯分布，AMI数据中的节点注入功率服

从均值为 0，标准差为 0.005的高斯分布，伪量测

服从均值为 0，标准差为 0.3的高斯分布。设定

SCADA量测类型为 FTU，D-PMU和 SCADA的布
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局如表1所示，每个节点均配置AMI量测。

图3 IEEE 33节点配电网系统拓扑图

Fig.3 Topology of IEEE 33 node distribution system
表1 IEEE 33节点配电系统的量测布局

Tab.1 Measurement layouts of the IEEE 33 node system
量测类型

D-PMU电压量测

D-PMU电流量测

SCADA

量测位置

2，3，6，12，31
（2），（22），（25），（12），（31）

（7），（14），（15），（19），（21），（24）
测 试 系 统 的 硬 件 环 境 为 Intel i5-12490f

CPU，内存为16 GB，开发环境为Matlab R2022b。
3.2 有效性分析

状态估计周期设置为 5 min，24 h共执行状态

估计 288次。为验证所提融合多源数据的自适应

EKF状态估计方法的准确性，选取以下两种算法

估计系统在24 h内288个时间断面的状态。

算法 1：本文所提算法，即考虑多源量测数据

时延融合的自适应EKF方法，设置初始状态变量

初值为 x0 = { [ e0, f0 ]Τ:e0 = 1, f0 = 0 }；
算法 2：不考虑多源数据时延融合的 EKF估

计方法，初始状态变量与算法1相同[25]。
IEEE 33节点配电系统在第 200时间断面通

过上述算法得到的各节点电压幅值和相角误差

如图4所示。

如图 4所示，在利用多源量测数据进行状态

估计时，算法 2未考虑多源量测数据融合问题，导

致其电压幅值和电压相角的估计误差均大于考

虑多源量测数据融合的算法 1。这是由于多源数

据未融合导致在状态估计时刻难以获取相同时

间戳的量测数据，从而导致状态估计精度降低。

为进一步定量分析不同算法的状态估计精度，

采用节点电压幅值和相角误差的均值 ev,mean/eθ,mean和
最大值ev,max/eθ,max作为量化指标，计算公式如下：
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ev,mean = 1
NDSEM

∑
j = 1

NDSE∑
i

M

ev,i,j

eθ,mean = 1
NDSEM

∑
j = 1

NDSE∑
i

M

eθ,i,j

st: ev,max = max1≤ i ≤ M,1 ≤ j ≤ NDSE
ev,i,j

eθ,max = max1≤ i ≤ M,1 ≤ j ≤ NDSE
eθ,i,j

（30）

表 2列出了两种算法下的状态估计误差结

果。相比算法 2的估计误差，算法 1的估计误差

整体偏小，电压幅值误差均值下降了 7.64%、电压

相角误差均值下降了 15.75%，电压幅值误差最大

值下降了 8.61%、电压相角误差最大值下降了

6.01%。由此可见，在具有多源量测的配电网中，

考虑量测时延融合可在一定程度上提高状态估

计精度。
表2 IEEE 33配电网中各算法的状态估计误差对比

Tab.2 State estimation error comparison of various
algorithms in the IEEE 33 node system

状态估

计算法

算法1
算法2

电压幅值误差/1e-3（标幺值）

ev,mean
0.757 1
0.819 7

ev,max
1.717 0
1.878 7

电压相角误差/1e-3rad
eθ,mean
0.155 7
0.184 8

eθ,max
0.788 4
0.838 8

3.3 不良数据的鲁棒性分析

为了验证所提算法在测量集中存在不良数

据时的鲁棒性，本文以 IEEE 33节点配电系统为

例，在 150~155时间断面向节点 6的D-PMU测量

数据注入误差为±5%的随机不良数据。图 5展示

图4 IEEE 33配电系统中各算法的状态估计误差

Fig.4 State estimation error obtained by various
algorithms in the IEEE 33 node system
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了节点 6在 120~180时间断面的测量幅值、测量

差值绝对值以及自适应阈值的变化趋势。其中，

图 5a展示了节点 6在量测正常时的电压幅值变

化，图 5b展示了节点 6在 150~155时间断面存在

误差为±5%随机不良数据时的电压幅值变化，图

5c展示了节点6在量测正常时的不良数据检测结

果，图 5d展示了节点 6在 150~155时间断面存在

不良数据时的检测结果。

由图 5c可见，当量测值处于正常状态时，自

适应检测阈值始终高于测量差值绝对值，表明该

时段内无不良数据。而在 150~155时间断面，量

测值含有不良数据时，自适应检测阈值和测量差

值绝对值如图 5d所示。此时段自适应检测阈值

显著降低，测量差值绝对值超过了阈值，进而判

定该时段存在不良数据。这说明所提出的基于

自适应 EKF的状态估计方法能够有效检测出不

良测量数据。

为了进一步突出所提自适应 EKF算法在不

良量测数据中的鲁棒性，本文选择传统EKF算法

作为对照，在不良数据误差为±5%且含量分别为

0，5%和 10%的量测条件下，对比分析其状态估

计精度。表 3展示了 IEEE 33节点配电系统中在

不同比例不良量测数据条件下，两种算法的状态

估计误差。
表3 存在不良量测时 IEEE 33节点系统中

各算法的状态估计误差对比

Tab.3 State estimation errors comparison of various algorithms in
the IEEE 33 node system with bad measurements

不良

数据

含量

0

5%

10%

算法

自适应EKF
EKF

自适应EKF
EKF

自适应EKF
EKF

电压幅值误差/
1e-3（标幺值）

ev,mean
0.757 1
0.758 4
0.793 4
0.987 5
0.997 0
1.576 4

ev,max
1.717 0
1.732 5
1.808 8
2.209 6
2.535 8
3.945 1

电压相角误差/
1e-3 rad

eθ,mean
0.155 7
0.157 4
0.167 5
0.211 4
0.225 6
0.416 0

eθ,max
0.788 4
0.786 1
0.847 7
1.047 9
1.108 4
2.027 2

如表 3所示，当量测数据正常时，自适应EKF
与传统EKF的估计精度相近。当含有 5%不良数

据时，自适应EKF和EKF算法的 ev,mean值分别比不

含不良数据时上升了 4.79%和 30.21%；而在含有

10%不良数据的情况下，ev,mean 值则分别提高了

31.68%和 107.86%。这表明不良量测数据比例

的增加会导致两种算法的状态估计误差增大，但

自适应EKF的误差增加幅度相对较小。

此外，与传统 EKF相比，自适应 EKF在不良

数据含量为 5%和 10%时的 eθ,mean值分别下降了

26.73%和 119.40%。这表明，在存在不良量测数

据的情况下，所提出的自适应EKF算法能够利用

其他良好量测值来降低估计误差，从而有效缓解

图5 IEEE 33节点系统中节点6的不良数据检测结果

Fig.5 Bad data detection results at node 6 in the
IEEE 33 node system
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不良数据对状态估计精度的影响，提升状态估计

的鲁棒性。

4 结论

为了克服多源量测数据存在非同步和不良

数据导致状态估计性能下降的问题，本文提出了

一种多源量测数据融合和检测并剔除不良数据

的动态状态估计方法。首先，设计了一种协调多

时间尺度量测数据的融合方法。基于DTW的时

间戳对齐方法将 PMU数据的时间戳赋予 SCADA
数据，实现多源量测数据时标对齐。此外，通过

引入自适应检测机制，利用不良数据与正常数据

在时间上的弱相关性，对 EKF算法进行了改进。

该改进在更新步骤前实现不良数据的在线检测

与滤除，从而提升了估计精度。基于 IEEE 33节
点系统进行算例分析，验证了相较于 EKF算法，

基于量测数据融合的自适应 EKF的状态估计方

法得到的电压幅值和电压相角的估计误差更小，

不良数据的鲁棒性分析验证了所提方法在不同

不良数据比例下的状态估计可靠性。
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