机理-数据融合驱动的互联变流系统故障诊断方法

石立国¹,李延真¹,李元付¹,关雪琳¹,徐志根¹,张明远²

(1. 国网山东省电力公司青岛供电公司,山东青岛 266000;2. 山东大学 电气工程学院,山东 济南 250001)

摘要:三电平中点钳位型互联变流器,因其大容量、高电能质量等优势,已逐渐成为交直流混联配电网系统的主流能量变换装备。但其长期工作于大功率、时变负载、有限散热等恶劣工况,功率器件开路故障率高。同时,现有故障诊断方法多为单一机理或数据依赖,无法克服系统模型结构复杂、运行工况多变的难题,诊断准确性与快速性较差。为此,提出了一种机理-数据融合驱动的互联变流系统故障诊断方法。首先,基于三电平变流系统的机理模型,结合神经网络观测器,构建机理-数据融合模型以提高故障诊断精度。随后,分析了电流残差量在不同器件开路故障后的变化轨迹,总结出电流残差故障特征表进行开路故障诊断。最后,实验与硬件在环测试结果验证了所提方法的有效性。

关键词:交直流混联配电网;三电平互联变流器;故障诊断;机理-数据融合;电流残差 中图分类号:TM46 文献标识码:A DOI:10.19457/j.1001-2095.dqcd25293

Mechanism-data-fusion-driven Fault Diagnosis Method for Interconnected Conversion Systems

SHI Liguo¹, LI Yanzhen¹, LI Yuanfu¹, GUAN Xuelin¹, XU Zhigen¹, ZHANG Mingyuan²

(1. State Grid Shandong Electric Power Company Qingdao Power Supply Company, Qingdao 266000, Shandong, China; 2. School of Electrical Engineering, Shandong University, Jinan 250001, Shandong, China)

Abstract: Three-level neutral-point-clamped (3L-NPC) interconnected converters have been widely used in the AC-DC hybrid distribution grids due to their superiorities of large capacity and high power quality. However, their working conditions are always with high power, varying load, and limited heat dissipation, etc., with a high open-circuit failure rate of power switches. Meanwhile, existing fault diagnosis methods are mostly single mechanism-based or data-based, unable to overcome the problems of complex system model structure and changing operating conditions, resulting in low diagnostic accuracy and speed. To this end, a mechanism-data-fusion-driven fault diagnosis method for interconnected conversion systems was proposed. Firstly, a mechanism-data-fusion model was constructed using a neural network observer to improve the fault diagnosis accuracy. Subsequently, the trajectories of current residuals after open-circuit faults of different devices were analyzed, and a current residual table was summarized, based on which a fast and accurate open-circuit fault diagnosis method was formed. Finally, the experimental and hardware-in-the-loop results verify the effectiveness of the proposed method.

Key words: AC-DC hybrid distribution grid; three-level interconnected converter; fault diagnosis; mechanism-data-fusion; current residual

大力发展可再生能源,提高新能源渗透率是 实现"双碳"目标的重要途径。然而,新能源的波 动性与随机性、负荷的多样性、电力电子化的低 惯性等对电力系统的稳定运行提出了严峻挑战。 交直流混联配电网凭借其能源效率高、更适于多 分布式新能源电源接入等优势成为未来发展的 重要趋势^[1]。互联变流器作为交直流混联配电网 系统中的核心能量变换装备,其智能控制与可靠 运维技术是实现新能源友好消纳、能量稳定互济 的核心技术^[2]。其中,以三电平中点钳位型 (three-level neutral-point-clamped, 3L-NPC)为核 心能量变换装备的互联变流系统,具有容量大、

作者简介:石立国(1984—),男,博士,高级工程师,主要研究方向为智能配用电系统可靠控制,Email:shiliguo@126.com

基金项目:国家电网有限公司总部管理科技项目(5100-202116567A-0-5-SF)

输出电平相对多、开关应力相对小、谐波污染相 对少等诸多优势^[3],在交直流混联配电网系统中 的使用率逐年攀升,逐渐成为研究重点^[4]。

然而,交直流混联配电网中的互联变流器长 期工作在高电压、大电流、时变负载、有限散热等 恶劣工况下,常因功率器件故障而工作异常,甚 至系统崩溃,造成严重经济损失^[5]。因此,开展互 联变流器故障诊断技术研究,提高变流系统的可 靠性,刻不容缓。其中,功率器件故障是变流系 统可靠性的最大威胁,其开路故障尚缺乏完整的 应对机制,亟待深入探究^[6]。

目前,针对变流系统功率器件开路故障的诊 断方法主要分为数据驱动与机理驱动两大类四。 数据驱动型故障诊断方法,是指依托智能算法处 理系统的大量运行状态数据,以建立状态数据与 故障类型间的映射关系,并据此进行故障诊断^[8]。 文献[9]针对三电平变流系统,选择输出电压谐波 幅值为故障特征量输入神经网络,实现在单采样 周期内准确定位故障器件。文献[10]将变流系统 输出电流的Park矢量输入模糊逻辑,以实现多个 故障器件同时辨识。文献[11]将长短期记忆神经 网络用于处理双馈风电系统中的电流与电压量, 据此形成的故障诊断方法具有精确辨识能力与 强鲁棒性。然而,数据驱动型故障诊断方法在互 联变流装备中仍鲜有应用。原因是:1)数据驱动 方法难以清晰呈现变流系统状态量间的内在联 系,可解释性差;2)智能算法训练过程所占用的 计算资源过高,难以嵌入目前的工业控制器; 3)依赖数量庞大但维度欠缺的历史数据无法精 准建立变流系统的数据模型,诊断精度受限。

机理驱动型开路故障诊断方法,是指在基于 物理规律建立变流系统的精确机理模型后,分析 变流器系统状态量在健康与故障工况下的衍变 轨迹,挖掘开路故障的深层机理,并据此形成故 障诊断方法^[12]。针对三电平变流系统,文献[13] 提出了一种基于自适应滑模观测器的开路故障 诊断方法,可有效实现单管和双管故障的快速诊 断。文献[14]提出了基于开关状态偏差的故障诊 断方法,该方法基于变流系统的输出电流推导系 统此刻的真实开关状态,并与预期开关状态进行 比较来实现故障器件的快速精确辨识;文献[15] 提出了基于变流系统输出电流极性的诊断方法, 成功实现多器件故障同时辨识。机理驱动型故 障诊断方法无需额外的硬件电路或传感器,只需 在原本控制算法的基础上添加诊断算法,更易被 工业界所接受,且算法计算量小、易于实现¹⁶¹。然 而,该方法诊断精度强依赖于机理模型准确度, 故障诊断流程对系统暂态的抗扰性差,易误诊。

由此可见,单一机理模型或数据依赖的故障 诊断方法无法克服互联变流系统模型结构复杂、 运行工况多变的特点,诊断准确性与快速性较 差。为解决失配模型诊断精度差与单一数据驱 动故障诊断方法难以及时发现故障隐患的问题, 本文提出了一种机理-数据融合驱动的并网变流 系统故障诊断方法。首先构建三电平变流系统 的机理模型,在此基础上引入数据驱动方法辨识 模型参数,构建动态融合模型以提高故障诊断精 度。随后分析三电平变流系统的电流流通路径, 选取电流残差作为故障特征量,并具体描述残差 量在不同器件开路故障后的变化轨迹,总结出电 流残差的故障特征表;最后依据此表形成一套快 速准确的开路故障诊断方法。

1 互联变流系统融合模型构建

1.1 三电平互联变流器工作原理

三电平互联变流器拓扑如图1所示。

Fig.1 Topology diagram of a three-level neutral-pointclamped interconnected power conversion system

图 1 中,用 S_g^x 表示三电平变流器 x 相桥臂的 开关状态,定义 $S_g^{x1}, S_g^{x2}, \bar{S}_g^{x1} 与 \bar{S}_g^{x2}$ 为该相桥臂 IGBT ($G_g^{x1}, G_g^{x2}, \bar{G}_g^{x1}, \bar{G}_g^{x2}$)的门极信号。为避免 IGBT 承受 过高的关断电压, $G_g^{x1} = \bar{G}_g^{x1}$ 的门极信号互补, G_g^{x2} 与 \bar{G}_g^{x2} 的门极信号互补,即 $S_g^{x1} + \bar{S}_g^{x1} = 1, S_g^{x2} + \bar{S}_g^{x2} =$ 1。开关状态 S_g^x 与桥臂导通情况的关系如下:

 $S_{g}^{x} = \begin{cases} P & G_{g}^{x1} = \int G_{g}^{x2} \neq 0 \quad D_{g}^{x1} = \int D_{g}^{x2} \neq \overline{D} \\ O & G_{g}^{x2} = \int D_{g}^{cx} \neq \overline{O}_{g}^{x1} = \overline{D}_{g}^{cx} \neq \overline{D} \\ N & \overline{G}_{g}^{x1} = \overline{G}_{g}^{x2} \neq \overline{D}_{g}^{x1} = \overline{D}_{g}^{x2} \neq \overline{D} \end{cases}$ (1)

三电平变流器桥臂输出电压与开关状态的 关系如表1所示,当开关状态*S*^{*}₂为P时,上侧 IGBT 的 G_{g}^{x1} 与 G_{g}^{x2} 被触发导通,桥臂输出电压为 V_{e10} 同理,当开关状态 S_{g}^{x} 为0时,桥臂输出电压 为0;当开关状态 S_{g}^{x} 为N时,桥臂输出电压为 $-V_{e20}$ 据此得出三电平变流器的三相开关状态组 合共计27种,如下所示:

Tab.1 The relationship between the phase leg output voltage and the switching state of a three-level power converter

$S_{\rm g}^{x}$	S_{g}^{x1}	$S_g^{x^2}$	\bar{S}_{g}^{x1}	$\bar{S}_{g}^{x^{2}}$	$v_{ m g}^{ m xo}$
Р	1	1	0	0	V_{c1}
0	0	1	1	0	0
Ν	0	0	1	1	$-V_{c2}$

1.2 三电平互联变流系统机理模型构建

如图1所示,假设三电平变流系统为三相对称系统,其输出电压矢量**v**^{abc}可表述为下式:

$$\boldsymbol{v}_{g}^{abc} = \frac{V_{dc}}{6} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \boldsymbol{S}_{g}^{abc} + \frac{V_{o}}{6} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} |\boldsymbol{S}_{g}^{abc}| \qquad (3)$$

其中 $V_{dc} = V_{c1} + V_{c2}$ $V_o = V_{c1} - V_{c2}$ 式中: V_{dc} 为前述直流母线电压; V_o 为母线电容不 平衡电压差。

直流母线电容电流 *i*_{c1} 与 *i*_{c2} 可由变流器总线 电流 *i*^p_g, *i*ⁿ_g表示,并进一步由其三相电流 *i*^{abc}_g与开关 状态 *S*^{abc}_g推导得出,如下式:

$$\begin{cases} i_{c1} = i_{g}^{p} = \frac{1}{2} \left[(|S_{g}^{a}| + S_{g}^{a}), (|S_{g}^{b}| + S_{g}^{b}), (|S_{y}^{c}| + S_{y}^{c}) \right] \cdot i_{g}^{abc} \\ i_{c2} = i_{g}^{n} = \frac{1}{2} \left[(|S_{g}^{a}| - S_{g}^{a}), (|S_{g}^{b}| - S_{g}^{b}), (|S_{y}^{c}| - S_{y}^{c}) \right] \cdot i_{g}^{abc} \end{cases}$$

$$(4)$$

由式(4)可得 V。的微分方程表达式如下:

 $\frac{\mathrm{d}V_{\mathrm{o}}}{\mathrm{d}t} = \frac{\mathrm{d}V_{\mathrm{c1}}}{\mathrm{d}t} - \frac{\mathrm{d}V_{\mathrm{c2}}}{\mathrm{d}t} = \frac{1}{C}\left(i_{\mathrm{g}}^{\mathrm{p}} - i_{\mathrm{g}}^{\mathrm{n}}\right) = \frac{1}{C} \cdot \boldsymbol{S}_{\mathrm{g}}^{abc^{\mathrm{T}}} \cdot \boldsymbol{i}_{\mathrm{g}}^{abc} (5)$

进一步,根据基尔霍夫电压定律可列写电网 侧微分方程如下:

$$e^{abc} = L_g \frac{\mathrm{d}\boldsymbol{i}_g^{abc}}{\mathrm{d}t} + R_g \boldsymbol{i}_g^{abc} + \boldsymbol{v}_g^{abc}$$
(6)

对式(6)应用Clark与Park变换可得其在*d-q* 旋转坐标系下的微分方程为

$$\boldsymbol{e}^{dq} = L_{g} \frac{\mathrm{d}\boldsymbol{i}_{g}^{dq}}{\mathrm{d}t} + \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}}_{H} \boldsymbol{i}_{g}^{dq} + R_{g} \boldsymbol{i}_{g}^{dq} + \boldsymbol{v}_{g}^{dq} \qquad (7)$$

对式(7)采用前向欧拉近似可得网侧电流的 离散化差分方程为

$$\boldsymbol{i}_{g[k+1]}^{dq} = (1 - \frac{T_s R_g}{L_g}) \boldsymbol{i}_{g[k]}^{dq} - \boldsymbol{\omega}_g T_s \boldsymbol{H} \boldsymbol{i}_{g[k]}^{dq} + \frac{T_s}{L_g} \left(\boldsymbol{e}_{[k]}^{dq} - \boldsymbol{v}_{[k]}^{dq} \right)$$
(8)

式中:w_g为电网角频率;T_s为控制器采样周期。

1.3 三电平互联变流系统融合模型构建

上述机理模型是基于理想器件参数而建立 的,但在实际工程应用中,准确的器件参数难以获 取,且其数值随运行工况缓慢变化,这将直接影响 机理驱动型故障的精确度。为减小诊断算法对系 统模型的依赖,本文提出一种机理-数据融合驱动 的模型构建方法。具体而言,使用神经网络观测 器(neural network observer, NNO)在线辨识参数并 实时更新变流器模型。因此,本文提出的方法可 从丰富的数据中挖掘信息,进一步提升对模型变 化和环境变化的适应性,以确保后文提出的故障 诊断方法在多种运行工况下的可靠性。

神经网络(neural network,NN)是对生物神经 网络结构和功能的机器模拟,本质上是对信息分 析处理从而解决实际问题的数学模型。其具有 突出的非线性映射、自主学习、强鲁棒性等优点, 在参数估计、数据拟合、故障诊断等领域应用广 泛^[17]。人工神经网络的输出主要由神经元数目、 传递函数、连接方式、权重等共同决定。

神经元是神经网络的最小信息处理单元,在 神经网络中发挥重要作用。如图2所示,神经元 模型主要由输入、链接权重、阈值比较、激活函数 及输出组成。其中, x_1, x_2, \dots, x_i 为神经元的输入 信号; $\omega_1, \omega_2, \dots, \omega_i$ 为连接权值调节各个输入量 的比重; γ 为神经元的阈值,只有当神经元收到的 数据达到阈值时才会被向前传递;将 $\sum_{i=1}^{n} \omega_i x_i$ 与阈 值进行比较,最后经过激活函数映射以产生神经 元的输出信号。

在图2中激活函数之前的环节皆为线性环 节,只能解决线性可分的问题。为了在神经网络 中引入非线性因素,从而解决线性模型表达能力 不足的缺陷,将激活函数引入神经网络中。激活 函数能够使人工神经网络具有不同的特性,其本 质上是一个线性或非线性的复合函数。为实现 模型参数的精准辨识,本文选用线性激活函数。

基于此,本文所提方法将神经网络作为观测 器,进行变流系统模型参数的在线辨识,进而实 现机理-数据融合模型的构建,具体步骤如下:

1)以三电平互联变流器 k 时刻电压、电流观 测值作为神经网络输入,k+1时刻电压、电流观测 值作为神经网络输出:

2)结合变流装备机理模型,将待辨识参数作 为权重系数输入神经网络:

3)采用梯度下降算法,在线训练神经网络, 更新权重系数值,实现参数实时辨识。

基于上述步骤,变流器输出电流的差分方程 式可以改写为

 $\hat{\boldsymbol{i}}_{\mathtt{g[k+1]}}^{dq} = \boldsymbol{\alpha}_{1[k]} \boldsymbol{i}_{\mathtt{g[k]}}^{dq} + \boldsymbol{\alpha}_{2[k]} (\boldsymbol{e}_{[k]}^{dq} - \boldsymbol{v}_{\mathtt{g[k]}}^{dq}) - \boldsymbol{\omega}_{\mathtt{g}} T_{\mathtt{s}} \boldsymbol{H} \boldsymbol{i}_{\mathtt{g[k]}}^{dq}$ (9)

其中,修正系数 α_1 与 α_2 的理论值分别为1-T_R_/L_ 与T_s/L_s,与系统模型参数R_s和L_s直接相关,而预 测方程的最后一项*ω*,*T*,*H*则完全不受系统模型参 数的影响。

采用误差平方和*E*₁₄来评估修正系数的精 度,定义如下:

$$E_{[k]} = \frac{1}{2} \left[(\hat{i}_{g[k]}^d - i_{g[k]}^d)^2 + (\hat{i}_{g[k]}^d - i_{g[k]}^d)^2 \right] \quad (10)$$

在每个控制周期内,修正系数 α_1 和 α_2 的更新 公式如下:

$$\begin{cases} \alpha_{1[k]} = \alpha_{1[k-1]} - \beta_1 \frac{\partial E}{\partial \alpha_1} \\ \alpha_{2[k]} = \alpha_{2[k-1]} - \beta_2 \frac{\partial E}{\partial \alpha_2} \end{cases}$$
(11)

式中: β_1 , β_2 为更新步长也称学习率,通常设置为 其理论值的1/100,以兼顾系数修正的快速性与 稳定性。

基于电流残差的故障诊断 2

2.1 电流残差分析与生成

2.1.1 电流路径分析

三电平变流系统中存在6条电流流通路径, 14

如图3所示,其电流路径由可控的IGBT与非控的 续流与钳位二极管共同构成。在电流路径(Ⅲ) 与(IV)中,变流器输出电流仅流经非控续流二极 管,这两条路径在任意开关状态S*下均保持开通 状态。可控IGBT参与其余4条电流路径(I), (Ⅱ),(V)与(VI)的构成,它们仅在特定开关状 态 S*下保持开通状态。在变流器正常运行时,任 意开关状态 S* 下均存在4条可导通的电流路 径,其中具有最大电位差的电流路径将真正导 通电流。

在变流器系统发生开路故障后,故障 IGBT 与二极管处将保持断开状态。如若故障器件位 于真正导通的电流路径中,该路径将被迫断开, 而在剩余保持开通的电流路径中,对应最大电位 差的路径将取代它真正导通。但控制器无法获 知该变动,其预期导通的电流路径将偏离变流器 真正导通的电流路径,本文所提及的电压残差与 电流残差正是在这一过程中产生,它们将服务于 后文的故障诊断算法。

2.1.2 电流残差生成

在实际工程应用中,网侧电流ign可直接由传 感器量测的相电流 ist 变换得到, 变流器输出电压 **v**⁴则需基于开关状态与电容电压计算得到,其相 电压计算式如下:

$$v_{\rm g}^{x} = S_{\rm g}^{x1} S_{\rm g}^{x2} V_{\rm c1} - \bar{S}_{\rm g}^{x1} \bar{S}_{\rm g}^{x2} V_{\rm c2}$$
(12)

在变流系统发生开路故障后,控制器预期导

通的电流路径被封锁,变流器输出电流真正流通路径所对应的实际开关状态 S_{g}^{x} 已经偏离预期开关状态 \hat{S}_{g}^{x} 。基于式(12)计算得到的预期相电压 \hat{v}_{g}^{x} 将产生误差,该误差随后通过式(9)传递至预期网侧电流 \hat{i}_{g}^{t} ,产生的电流残差 $\Delta i_{g|k+1}^{d}$ 为

$$\begin{split} \Delta \boldsymbol{i}_{g[k+1]}^{dq} &= \boldsymbol{i}_{g[k+1]}^{dq} - \hat{\boldsymbol{i}}_{g[k+1]}^{dq} = -\alpha_{2[k]} \Delta \boldsymbol{v}_{g[k]}^{dq} \quad (13) \\ \texttt{其P} & \Delta \boldsymbol{v}_{g[k]}^{dq} = \boldsymbol{v}_{g[k]}^{dq} - \hat{\boldsymbol{v}}_{g[k]}^{dq} \\ \texttt{式P} : \Delta \boldsymbol{v}_{g[k]}^{dq} \texttt{为} \texttt{B} \mathbb{E} \mathcal{K} \boldsymbol{\pounds}_{\circ} \end{split}$$

对残差传递式(13)应用 Clark 反变换,能够 得到三相电流残差 $\Delta i_{g[k+1]}^{abc}$ 与单相电压残差 $\Delta v_{g[k]}^{s}$ 间的关系式为

$$\Delta \boldsymbol{i}_{g[k+1]}^{abc} = -\frac{2\alpha_{2[k]}}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{v}_{g[k]}^{a} \\ \Delta \boldsymbol{v}_{g[k]}^{b} \\ \Delta \boldsymbol{v}_{g[k]}^{c} \end{bmatrix}$$
(14)

2.2 基于电流残差的故障诊断方法

在功率器件发生开路故障后,电流残差 Δi_g^{abc} 在特定开关状态 S_g^x 下将接近一个常数。所提基 于电流残差的开路故障诊断方法核心是实时监 测传感器量测得到的实际值 i_g^{abc} 与控制器计算得 出的预期值 \hat{i}_g^{abc} 间的电流残差 Δi_g^{abc} 。在变流器正 常运行时,电流残差 Δi_g^{abc} 在零值附近波动,开路 故障后其将快速上升或下降至特定理论值附近, 所提故障诊断方法通过在特定开关状态 S_g^x 下电 流残差 Δi_g^{abc} 的数值来辨识故障器件。

2.2.1 故障诊断

功率器件发生开路故障后,其对变流器系统 的影响首先体现在故障相电压残差上,随后经式 (14)传递至三相电流残差Δ*i*^{abe}上,其在数字控制 器中可表示为

$$\Delta \boldsymbol{i}_{g[k]}^{abc} = \boldsymbol{i}_{g[k]}^{abc} - \hat{\boldsymbol{i}}_{g[k]}^{abc} \tag{15}$$

在实际工程应用中,传感器的采样噪声与温度漂移等难以避免,这将影响电流残差Δi^{abc}的计算精度。为提高所提开路故障诊断算法的可靠性,采用均值滤波法来减弱瞬时采样误差的干扰,均值滤波后的诊断变量r^{abc}定义如下:

$$r_{[k]}^{abc} = \frac{\Delta i_{g[k]}^{abc} + \Delta i_{g[k-1]}^{abc} + \dots + \Delta i_{g[k-n+1]}^{abc}}{n} \quad (16)$$

式中:n为均值滤波步长。

n需根据应用需求灵活调整,此处主要用于减弱 瞬时采样误差对诊断算法的干扰,将n设置为3 便已满足需求。 在变流器系统正常运行时,网侧电流的预期 值 \hat{i}_{g}^{abc} 紧随其真实值 i_{g}^{abc} 。但由于传感器噪声、系 统建模精度等因素干扰,控制器计算所得的电流 残差 Δi_{g}^{abc} 不可能精确保持零值,于是设置诊断阈 值 thr_{0} 来避免故障信号误触发,定义如下:

$$thr_0 = l_0 \cdot \frac{2\alpha_{2[k]}V_{dc}}{3}$$
 (17)

其中,将诊断阈值*thr*。设置为正常工况最大电流残 差绝对值的两倍便足以避免故障信号误触发,经 变流系统实验平台测试,此处*l*。可设置为0.20。

在开路故障后,均值滤波后的电流残差 r^{abc} 将快速超出诊断阈值 thr_{00} 由残差传递式(14)可知,电流残差绝对值 $|r_x|$ 在故障相的数值是健康相的两倍,于是具有最大电流残差绝对值 $|r_x|$ 的相便可辨识为故障相,进而可在故障相上施加特定的开关状态 S^x_g 来定位具体故障器件。

2.2.2 故障定位

在诊断出故障相后,故障定位流程随后启动 来定位具体故障器件。如图3所示, $G_g^{x1}, G_g^{x2}, \bar{D}_g^{x1}$, \bar{D}_g^{x2} 与 D_g^{ex} 参与电流路径(I),(II)与(II)的构成, 这三条路径均对应负向电流,即,这些功率器件 开路故障仅会影响电流 i_g^{x} 的负半周,产生的故障 相电流残差 r^x 将为正值。而 $\bar{G}_g^{x1}, \bar{G}_g^{x2}, D_g^{x1}, D_g^{x2}$ 与 \bar{D}_g^{ex} 位于电流路径(IV),(V)与(VI)中,这些器件开 路故障仅会影响电流 i_g^{ex} 的正半周,产生的故障相 电流残差 r^x 将为负值,具体规律总结于表2中。 观察此表易知,根据故障相电流残差 r^{ex} 的极性可 首先将上述两大故障类型区分开。

当电流残差 r_x 快速上升超出阈值 thr_0 时,可 初步判断开路故障发生在 $G_g^{x1}, G_g^{x2}, \bar{D}_g^{x1}, \bar{D}_g^{x2}$ 与 D_g^{ex} 内,随后两种特定开关状态将陆续施加在故障相 上以进一步定位故障器件。由于 IGBT 的故障率 与造价均高于续流二极管和钳位二极管,首先在 故障相上施加持续5 T_s 的开关状态P来判断开路 故障是否发生在 G_g^{x1} 或 G_g^{x2} 处。若 G_g^{x1} 故障,电流 残差 r_x 将为 $\alpha_{2[k]}V_{de}/3$;若开路故障发生在 $\bar{D}_g^{x1}, \bar{D}_g^{x2}$ 与 D_g^{ex} 处,电流残差 r_x 将回到零值。随后持续5 T_s 的开 关状态 O 将被施加在故障相上以进一步确认二 极管的状态。若 D_g^{ex} 故障,电流残差 r_x 将为 $\alpha_{2[k]}V_{de}/3$ 。在上述判别标准均不成立的情况下, 便可判断开路故障发生在 \bar{D}_g^{x1} 或 \bar{D}_g^{x2} 处。

当电流残差 r_x 快速下降超出阈值 $-thr_0$ 时,初步判断开路故障发生在 $\bar{G}_g^{x1}, \bar{G}_g^{x2}, D_g^{x1}, D_g^{x2} 与 \bar{D}_g^{cx} \psi$,

	Tab.2 Open-circuit fault characteristic table							
of voltage and current residuals								
	故障类型	电流方向	开关状态	电压残差	电流残差			
	G_g^{x1}	负向	Р	$-\frac{V_{dc}}{2}$	$\frac{\alpha_{2[k]}V_{\rm dc}}{3}$			
	G_g^{x2}	负向	Р	$-V_{ m dc}$	$\frac{2\alpha_{2[k]}V_{\rm dc}}{3}$			
	G_g^{x2}	负向	0	$-rac{V_{ m dc}}{2}$	$\frac{\alpha_{2[k]}V_{\rm dc}}{3}$			
	$\mathrm{D}^{cx}_{\mathrm{g}}$	负向	0	$-rac{V_{ m dc}}{2}$	$\frac{\alpha_{2[k]}V_{\rm dc}}{3}$			
	$ar{\mathrm{D}}^{cx}_{\mathrm{g}}$	正向	0	$rac{V_{ m dc}}{2}$	$-\frac{\alpha_{2[k]}V_{\rm dc}}{3}$			
	$ar{G}^{x1}_{ m g}$	正向	0	$rac{V_{ m dc}}{2}$	$-\frac{\alpha_{2[k]}V_{dc}}{3}$			
	$ar{G}^{x1}_{ m g}$	正向	Ν	$V_{\rm dc}$	$-\frac{2\alpha_{2[k]}V_{dc}}{3}$			
	$\bar{G}_{\rm g}^{x2}$	正向	Ν	$rac{V_{ m dc}}{2}$	$-\frac{\alpha_{2[k]}V_{\rm dc}}{3}$			
	$\bar{\mathrm{D}}_{\mathrm{g}}^{x1}/\bar{\mathrm{D}}_{\mathrm{g}}^{x2}$	负向	Ν	未知	$-\hat{i}_{g[k]}^{x} > 0$			
	D_g^{x1}/D_g^{x2}	正向	Р	未知	$-\hat{i}_{g[k]}^{x} < 0$			

表2 电压残差与电流残差的开路故障特征表

随后两种特定开关状态N与O将先后施加在故障 相上以定位故障器件,具体定位流程与电流残差 r,为正值时相似。持续5T。的开关状态N将被首 先施加在故障相上以确认 G_s¹¹与 G_s²²的状态, 若是 \bar{G}_{s}^{x1} 或 \bar{G}_{s}^{x2} 发生开路故障,电流残差 r_{x} 将分别为 $-2\alpha_{2[k]}V_{dc}/3 与 -\alpha_{2[k]}V_{dc}/3$ 。持续5T_s的开关状态0 将被随后施加在故障相上以确定 Dg 正常与否, 若是 D_a^{cx} 发生开路故障, 电流残差 r_x 将为 $-\alpha_{2[k]}V_{dc}/3$ 。如若电流残差 r_x 始终保持为零,便可 判断开路故障发生在D_g¹或D_g²处。

基于上述分析,两个诊断阈值thr₁与thr₂被设 置用来判断电流残差绝对值 $|r_x| = 0, \alpha_{2|k|} V_{dc}/3$ 或 $2\alpha_{2[k]}V_{dc}/3,其定义如下:$

$$thr_1 = l_1 \cdot \frac{2\alpha_{2[k]}V_{dc}}{3}$$
 (18)

$$thr_2 = l_2 \cdot \frac{2\alpha_{2[k]}V_{dc}}{3}$$
 (19)

其中,诊断阈值 thr_1 应该设置在 thr_0 与 $\alpha_{214}V_{dr}/3$ 之 间,诊断阈值 thr_2 应该设置在 $\alpha_{2[k]}V_{dc}/3$ 与 $2\alpha_{2[k]}V_{dk}/3之间,以明确判断电流残差r_x的归属。$ 因此,诊断系数1,与1,的取值范围分别为0.20~ 0.50 与 0.50~1.00。所提开路故障诊断算法流程 细节已总结于图4中。

仿真与实验结果分析 3

本节将在三电平互联变流系统实验平台与 硬件在环(hardware in the loop, HiL)平台上验证 所提开路故障诊断方法的有效性与鲁棒性。如 图 5 所示, 三电平互联变流器由三个 Imperix-PEN8018模块并联构成,IGBT开路故障可通过封 锁模块对应门极信号实现,然而钳位二极管与续 流二极管被封装在模块内部,其开路故障难以在 该实验平台上实现。因此,钳位二极管与续流二 极管开路故障将在HiL平台上模拟,该平台由两 台RT-Box实时仿真模拟器构成。一台RT-Box用 来模拟三电平互联变流系统状态变量在二极管 开路故障后的衍变轨迹,另一台RT-Box作为实时 控制器执行所提算法。实验与硬件在环仿真所 用参数相同,如表3所示。

图5 三电平变流器实验平台与RT-Box硬件在环测试平台 Fig.5 Three-level power converter and RT-Box HiL test platform

实验参数 数值 实验参数 数值 电网电压(e,RMS) 50 V 滤波步长 n 3 电网频率 f_{a} 50 Hz 诊断系数1。 0.20 滤波电感L_a $5 \mathrm{mH}$ 诊断系数11 0.30 滤波电阻R。 $0.44 \ \Omega$ 诊断系数1, 0.75 母线电容 C_1, C_2 1 551 µF 学习率 β_1 10^{-4} 200 V 学习率 β_2 10^{-6} 直流电压 V_{de} 控制周期T. 50 µs

表3 实验与仿真参数 Tab.3 Experimental and simulation parameters

所提方法针对IGBT开路故障的诊断效果如 图6所示,在变流器系统正常运行时,控制器计算 得出的网侧电流预期值 interaction 接近其真实值 ight in the second s 电流残差 Δi_{s}^{abc} 在零值附近。如图6a所示, a相 G_{s}^{a1} 的门极信号于0.01 s被封锁,故障相电流残差r。快 速上升在1T。内超出阈值thr_o。在正极性的电流残 $差r_a 被检测到后,持续5T_s的开关状态P与O被陆$ 续施加在故障相上。在开关状态S^a为状态P期间, 电流残差 r_a 最终介于阈值 thr_1 与 thr_2 之间,仅用时 $7T_s(0.35 \text{ ms})辨识出 G_a^{a1}故障。当开关状态 S_a^a 为状$ 态0期间,电流残差r。回到零值附近,这与此前的 理论分析相协调。如图6b所示,开路故障于0.01s 发生在 G_{s}^{a2} 处,电流残差 r_{a} 在1 T_{s} 内超出阈值 thr_{0} , 随后持续5T。的开关状态P与O被陆续施加在故障 相上。在开关状态S_a为P期间,电流残差r_a继续上 升最终超出阈值 thr_2 ,仅用时7 T_s 辨识出 G_g^{a2} 故障。

 \bar{G}_{g}^{a1} 开路故障后三相电流残差的变化轨迹与 G_{g}^{a2} 故障恰好相反,如图 6c 所示。当负极性的电 流残差 r_{a} 在1 T_{s} 内快速下降超出阈值 $-thr_{0}$ 时,持 续 5 T_{s} 的开关状态N与O被先后施加在a相桥臂 上。在开关状态 S_{g}^{a} 为N期间,电流残差 r_{a} 最后小 于阈值 $-thr_{2}$, \bar{G}_{g}^{a1} 被辨识为故障器件,所提方法诊 断用时仅需7 T_{s0} 。 \bar{G}_{g}^{a2} 开路故障的测试结果如图 6d 所示,在负极性的电流残差 r_{a} 被检测到后,持续 5 T_{s} 的开关状态N和O被陆续施加在故障相上。 在开关状态 S_{g}^{a} 为N期间,电流残差 r_{a} 最终稳定在 阈值 $-thr_{1}$ 与 $-thr_{2}$ 之间,所提方法依旧仅用时7 T_{s} 便可定位出 \bar{G}_{a}^{a2} 开路故障。

图7展示了所提方法针对两种二极管故障的 诊断效果。钳位二极管 D_g^{ca}于 0.01 s故障后,电流 残差 r_a快速超出阈值 thr₀,随后持续 5T_s的开关状

图6 所提方法针对IGBT开路故障的诊断效果

Fig.6 Diagnosis results for open-circuit faults in IGBT based on the proposed method

态P被首先施加在故障相上。由于D^{ca}_g仅在开关 状态O下导通网侧负向电流,在开关状态P下D^{ca}_g 故障不影响变流器运行,电流残差 r_a 回到零值附 近。持续5 T_s 的开关状态O被随后施加在故障相 上,电流残差 r_a 再次上升并最终稳定在阈值 thr_1 与 thr_2 之间,故障在13 T_s (0.65 ms)后被定位识别, 如图7a所示。 \bar{D}_g^{ca} 的故障定位流程类似,在负极 性的电流残差 r_a 被检测到后,持续5 T_s 的开关状 态N被施加在a相桥臂。电流残差 r_a 保持在零值 附近,直到开关状态O被施加在故障相上后,电 流残差 r_a 才再次下降并最终介于阈值 $-thr_1$ 与 $-thr_2$ 之间,所提方法用时13 T_s 诊断定位出 \bar{D}_g^{ca} 开 路故障,如图7b所示。

续流二极管开路故障会导致故障相电流 i_g 大幅阶跃,在滤波电感上激起危险的过电压,对 实验平台构成威胁,于是该故障只能在硬件在 环平台上模拟。如图7c所示, D_g^{a1}/D_g^{a2} 故障在 0.01 s发生后,故障相电流 i_g^a 被立刻强制置零, 电流残差 r_a 远远超出阈值 $-thr_{20}$ 在持续5 T_s 的 开关状态N与O被先后施加在a相桥臂期间,电 流残差 r_a 始终稳定在零值附近,意味着 $\bar{G}_g^{a1},\bar{G}_g^{a2}$ 与 \bar{D}_g^{ca} 工作正常。经过12 $T_s(0.60 \text{ ms})$ 后,所提方 法诊断出 D_g^{a1}/D_g^{a2} 故障。 $\bar{D}_g^{a1}/\bar{D}_g^{a2}$ 开路故障定位流 程与此相似,如图7d所示, $\bar{D}_g^{a1}/\bar{D}_g^{a2}$ 在0.01 s故障 后,正极性的电流残差 r_a 瞬间大幅超出阈值 thr_2 ,随后持续5 T_s 的开关状态P与O被陆续施加 在故障相上。在整个故障定位期间,电流残差 r_a 始终保持在零值附近,表明 G_g^{a1},G_g^{a2} 与 D_g^{ca} 工作 正常,开路故障只能发生在 \bar{D}_g^{a1} 或 \bar{D}_g^{a2} 处,所提方 法定位用时12 T_s 。

3.2 所提故障诊断方法的鲁棒性验证

根据残差传递式(14)可知,电流残差仅受单 相电压残差与修正系数α2影响,与变流器运行工 况无关。因此,所提基于电流残差的开路故障诊 断方法适用于包括不同电流幅值、不同功率因数 与不平衡电网等在内的多种运行工况。由于G^{a2} 故障的定位流程最具代表性,足以用于验证所提 方法的鲁棒性,于是下文对比实验仅给出该类故 障的实验数据,其诊断效果在图8中展示。

图9展示了暂态工况下所提方法的鲁棒性。 电流参考 i^{g*}_g 在 0.025 s 时由 12 A 下降至 6 A,在 0.05 s 时反向上升至-6 A,电流参考 i^{g*}_g 在 0.075 s 时由 0 A 反向上升至-3 A。在整个暂态测试过程 中,三相电流残差始终在正常范围内波动,最大 电流残差绝对值 lr_s 为 0.108 2,依旧不及阈值 thr₀ 的 1/2。因此,所提故障诊断方法在暂态运行工 况具备很强的鲁棒性。

引入神经网络观测器实时修正网侧电流预测方程式系数后,所提方法对变流器系统模型参数的鲁棒性大幅增强。当控制器中的电感参数 L^{init}分别设置为200%L_g与50%L_g时,修正系数 α₂

初始存在明显误差,但在 0.2 s内便收敛至理论值 附近,并最终稳定于 0.009 4,足以满足所提故障 诊断算法的精度要求。图 10 给出了电感参数 L_{g}^{init} 分别设置为 200% L_{g} 与 50% L_{g} 时的实验波形图,三 相电流残差 Δi_{g}^{int} 初始波动范围异常,随着修正系 数 α_{2} 在 0.2 s内快速收敛至真实值附近,电流残差 Δi_{g}^{int} 也快速回到正常范围内。滤波电阻 R_{g} 只会 影响修正系数 α_{1} ,且 $T_{s}R_{s}/L_{g}$ 的理论值为 0.000 44, 远小于修正系数 α_{1} 的理论值,因此滤波电阻 R_{g} 对 网侧电流 i_{g}^{int} 的影响不及滤波电感 L_{g} 。上述测试 表明,所提方法具备的快速参数自修正能力足以 应对变流器运行过程中的模型参数变化。即便 模型精确度大幅降低,所提方法亦只需耗时很短 的参数修正处理后便可正常工作。

under parameter mismatch condition

4 结论

三电平 NPC 互联变流器,因其大容量、高电能质量等优势,已逐渐成为交直流混联配电网系

统的主流能量变换装备。但其长期工作于时变 负载、有限散热等恶劣工况,功率器件开路故障 率高,现有单一机理或数据依赖的故障诊断方法 准确性与快速性较差。为此,本文提出了一种机 理-数据融合驱动的互联变流系统故障诊断方 法。首先基于三电平变流系统的机理模型,结合 神经网络观测器,构建机理-数据融合模型以提 高故障诊断精度。随后分析了电流残差量在不 同器件开路故障后的变化轨迹,总结出电流残差 故障特征表,并依据此表形成一套快速准确的开 路故障诊断机制。实验与硬件在环测试结果表 明,所提方法对三电平变流器系统内的所有功率 器件(IGBT、钳位与续流二极管)均具有快速准确 的故障诊断能力,且多工况适应性好、鲁棒性强。

参考文献

- [1] 何晋伟,孟维奇,蒋玮,等.新能源配电网电能质量典型问题 分析及应对策略[J].高电压技术,2023,49(7):2983-2994.
 HE Jinwei, MENG Weiqi, JIANG Wei, et al. Power quality problems in renewable energy power distribution systems: analysis and solutions[J]. High Voltage Engineering, 2023,49(7): 2983-2994.
- [2] 张昊,李昱,尹亚飞,等. 基于动态一致性算法的直流微电网高品质协同控制[J]. 电气工程学报,2022,17(1):15-21.
 ZHANG Hao, LI Yu, YIN Yafei, et al. High quality cooperative control of DC microgrids using dynamic consensus algorithm[J].
 Journal of Electrical Engineering,2022,17(1):15-21.
- [3] 孙勇,张建文,周剑桥,等.适用于交直流混联配电网的多端
 口柔性互联开关[J].中国电机工程学报,2023,43(13):
 5151-5163.

SUN Yong, ZHANG Jianwen, ZHOU Jianqiao, et al. A novel multiport flexible interconnection switch for AC/DC hybrid distribution network[J]. Proceedings of the CSEE, 2023, 43(13): 5151–5163.

[4] 陈宇,韩民晓,王皓界,等.基于模块化三电平方式的中压直流配电网 DC/DC 换流器设计[J].电力建设,2016,37(5):69-77.

CHEN Yu, HAN Minxiao, WANG Haojie, et al. DC/DC converter design of MVDC distribution network based on modular three-level converters[J]. Electric Power Construction, 2016, 37 (5):69–77.

- [5] ZHANG M, ZHANG Z, LI Z, et al. A unified open-circuit-fault diagnosis method for three-level neutral-point-clamped power converters[J]. IEEE Transactions on Power Electronics, 2022, 38(3):3834–3846.
- [6] 刘闯,寇磊,蔡国伟,等.基于人工智能的电力电子变换器开路故障诊断研究综述[J].电网技术,2020,44(8):2957-2970.

LIU Chuang, KOU Lei, CAI Guowei, et al. Review for AI-based open-circuit faults diagnosis methods in power electronics converters[J]. Power System Technology, 2020, 44(8):2957–2970.

[7] 马铭遥,凌峰,孙雅蓉,等.三相电压型逆变器智能化故障诊断方法综述[J].中国电机工程学报,2020,40(23):7683-7699.

MA Mingyao, LING Feng, SUN Yarong, et al. Review of intelligent fault diagnosis methods for three-phase voltage-mode inverters[J]. Proceedings of the CSEE, 2020, 40 (23) : 7683– 7699.

[8] 张振坤.三电平四象限电驱系统故障诊断及其容错控制[D].济南:山东大学,2021.

ZHANG Zhenkun. Fault diagnosis and tolerant control of three level four quadrant motor drive systems[D]. Jinan: Shandong University, 2021.

- [9] HAN P, HE X, REN H, et al. Fault diagnosis and system reconfiguration strategy of a single-phase three-level neutral-pointclamped cascaded inverter[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3863–3876.
- [10] 崔江,王强,龚春英.结合小波与 Concordia 变换的逆变器功 率管故障诊断技术研究[J].中国电机工程学报,2015,35 (12):3110-3116.

CUI Jiang, WANG Qiang, GONG Chunying. Inverter power switch fault diagnosis technique eesearch based on wavelet and concordia transform[J]. Proceedings of the CSEE, 2015, 35 (12):3110–3116.

- [11] XUE Z Y, XIAHOU K S, LI M S, et al. Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 8 (3):2600-2610.
- [12] ZHANG M, ZHANG Z, LI Z, et al. A simple and effective opencircuit-fault diagnosis method for grid-tied power converters—a

(上接第10页)

2022,46(2):472-480.

YIN Hao, DING Weifeng, CHEN Shun, et al. Day-ahead electricity price forecasting of electricity market with high proportion of new energy based on LSTM-CSO model[J]. Power System Technology, 2022, 46(2):472–480.

- [13] 杨苓,黄泽杭,陈璟华,等.基于纵横交叉算法的直流微电网 趋优稳定性分析[J].高电压技术,2023,49(11):4632-4641.
 YANG Ling, HUANG Zehang, CHEN Jinghua, et al. Optimal stability analysis of DC microgrid based on crisscross optimization algorithm[J]. High Voltage Technology, 2023, 49 (11): 4632-4641.
- [14] ZHANG Qian, LI Yan, DING Zhuwei, et al. Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators[J]. IEEE Transactions on Industry Applications, 2020, 56(5):6007–6018.
- [15] 杨赟,梅飞,张宸宇,等.虚拟同步发电机转动惯量和阻尼系

new technique based on tellegen's theorem[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 11 (2):2203-2213.

 [13] 许水清,黄文展,何怡刚,等.基于自适应滑模观测器的中点 钳位型三电平并网逆变器开路故障诊断[J].电工技术学报, 2023,38(4):1010-1022.
 XU Shuiqing, HUANG Wenzhan, HE Yigang, et al. Open-cir-

cuit fault diagnosis method of neutral point clamped three-level grid-connected inverter based on adaptive sliding mode observe
[J]. Transactions of China Electrotechnical Society, 2023, 38 (4):1010–1022.

- [14] ZHOU D, TANG Y. A model predictive control-based open-circuit fault diagnosis and tolerant scheme of three-phase AC – DC rectifiers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 7(4):2158–2169.
- [15] SHI T, HE Y, WANG T, et al. An improved open-switch fault diagnosis technique of a PWM voltage source rectifier based on current distortion[J]. IEEE Transactions on Power Electronics, 2019,34(12):12212-12225.
- [16] 黄凯,邱颖宁,秦伟等.基于实时电流幅值的风电整流器故 障诊断方法[J].电力工程技术,2019,38(2):25-31.
 HUANG Kai,QIU Yingning,QIN Wei,et al. Fault diagnosis algorithm for wind power rectifier based on real-time current amplitude[J]. Electric Power Engineering Technology, 2019, 38 (2):25-31.
- [17] ZHANG X, LI Z, ZHANG Z, et al. Neural network based opencircuit fault diagnosis for three-level neutral-point-clamped back-to-back converters[C]//2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), IEEE, 2021:748–752.

收稿日期:2023-07-31 修改稿日期:2023-12-21

数协同自适应控制策略[J].电力自动化设备,2019,39(3): 125-131.

YANG Yun, MEI Fei, ZHANG Chenyu, et al. Collaborative coordinated adaptive control strategy of rotational inertia and damping coefficient for virtual synchronous generator[J]. Electric Power Automation Equipment, 2019, 39(3):125–131.

[16] 高子轩,赵晋斌,杨旭红,等.基于RBF的VSG转动惯量和阻尼系数自适应控制策略[J].电力建设,2022,43(9):132-139.
GAO Zixuan, ZHAO Jinbin, YANG Xuhong, et al. RBF-based adaptive control strategy of rotational inertia and damping coefficient for VSG[J]. Electric Power Construction, 2022, 43(9): 132-139.

收稿日期:2023-07-18 修改稿日期:2023-11-15