基于改进电导增量法的变步长MPPT算法

郭金智¹,潘子峻²,袁绍军¹,孙荣富³,丁然³,徐海翔³,王靖然³,王隆扬²

(1.国网冀北电力有限公司承德供电公司,河北 承德 067000;

2. 武汉理工大学 机电工程学院, 湖北 武汉 430070;

3.国网冀北电力有限公司,北京 100053)

摘要:光伏发电系统的最大功率点跟踪(MPPT)技术对于保证光伏发电系统的输出效率和系统的稳定性 有重要意义。首先提出一种基于改进电导增量法的MPPT控制算法,通过引入与电流相关的系数对步长变化 量进行修正,以减小电流变化对光伏电池输出特性的影响。然后基于逼近理想解排序(TOPSIS)决策法,构建 了6项评价指标,对3种不同的系数选取方案进行综合评估比较,从而确定最优的变步长系数。MPPT模型的 仿真与TOPSIS评估计算表明,用1/I²作为修正系数对 dP/dU值进行修正,代替固定步长参数,得到的MPPT控 制算法有着更好的综合跟踪性能。

关键词:光伏发电;最大功率点跟踪;电导增量法;变步长;逼近理想解排序决策法 中图分类号:TM615 文献标识码:A DOI:10.19457/j.1001-2095.dqcd23385

Variable Step Size MPPT Algorithm Based on Improved Conductance Increment Method

GUO Jinzhi¹, PAN Zijun², YUAN Shaojun¹, SUN Rongfu³, DING Ran³,

XU Haixiang³, WANG Jingran³, WANG Longyang²

(1. State Grid Jibei Electric Power Company Chengde Power Supply Company, Chengde 067000,

Hebei, China; 2. School of Mechanical and Electronic Engineering, Wuhan University

of Technology, Wuhan 430070, Hubei, China; 3. State Grid Jibei

Electric Power Company, Beijing 100053, China)

Abstract: The maximum power point tracking (MPPT) technology of the photovoltaic power generation system is the great significance to ensure the output efficiency of the photovoltaic power generation system and the stability of the system. An MPPT control algorithm was proposed based on an improved conductance increment method, which modified the step change by a coefficient related to the current to decrease the influence of the current change on the output characteristics of the photovoltaic cell. Then, based on the technique for order preference by similarity to an ideal solution (TOPSIS) method, six evaluation indicators were constructed to evaluate three different coefficient schemes, and then determined the optimal variable step size coefficient. The simulation of the MPPT model and the TOPSIS calculation show that by using $1/I^2$ as the correction coefficient to correct the dP/dU instead of the fixed step size parameter, the obtained MPPT control algorithm has integrated tracking performance.

Key words: photovoltaic power generation; maximum power point tracking(MPPT); conductance increment method; variable step size; technique for order preference by similarity to an ideal solution(TOPSIS) method

近年来,以光伏发电为代表的新能源技术发展迅速,太阳能照明设备、太阳能汽车、大型光伏发电站等应用越来越多地走进大众视野。由于 光伏发电输出功率受气象条件影响较大,如何实现它的最大功率点跟踪(MPPT)已成为光伏发电领域的关键问题。 传统的MPPT方法由于步长恒定等原因不能 兼顾较快的跟踪速度和较小的稳态波动的要求, 有许多研究对其进行改进。文献[1]通过人群搜 索算法实现了变步长扰动测量法的设计。文献 [2]将恒压控制与扰动观测结合,先通过恒压控制 确定最大功率点大致的位置,再使用较小的步长

作者简介:郭金智(1979—),男,硕士研究生,高级工程师,Email:royalyuan@163.com 通讯作者:潘子峻(1997—),男,硕士研究生,Email:panzijun1186772136@foxmail.com

进行扰动观测。文献[3-4]提出一种基于近似梯 度法的变步长方法,即ldP/dUI(功率对电压导数 的绝对值)为参数进行变步长。文献[5]对比了近 年来的一些改进算法,分析了多种变步长方法, 指出某些阶跃性大幅扰动仍然存在跟踪不及时 的情况。

由于目前变步长电导增量法存在步长大小 受光照强度等因素影响较大,从而降低跟踪速度 等问题,本文对其中一种变步长因子dP/dU进一 步优化,对其中的电流系数项进行了乘方等处 理,并将几种优化算法的性能指标¹⁶⁷按TOPSIS决 策法¹⁷⁷进行加权计算对比,结果显示本文提出的 改进MPPT算法有着较好的综合跟踪性能。

1 现有方法的缺点分析

1.1 恒电压控制法

由光伏阵列的特性曲线可知,不同的光照强 度、温度等条件下的最大功率点集中在某一电压 值 U_m附近。恒电压控制法通过控制光伏阵列输 出电压,使其恒定为 U_m来保证输出功率。这种控 制算法简单直接,但是它忽略了在温度和光照强 度的影响下产生的偏移问题,并不是真正意义上 的功率跟踪。

1.2 扰动观测法

扰动观测法是一种比较常用的算法。控制 器持续给光伏阵列的输出电压一个指定方向的 扰动,将功率的变化进行比较,若功率变化ΔP>0, 则接着往该方向扰动,否则往相反的方向扰动。 这种方法能有效地进行跟踪,在实际跟踪过程中 的稳态误差较小。但此方法也有较多缺陷:实际 运行中,输出功率将在最大功率点左右扰动,从 而造成能量的浪费。

1.3 电导增量法

电导增量法通过计算 dP/dU的正负来判断当前工作点的位置,相比扰动法使用的ΔP和ΔU的 正负关系,其功率跟踪更为准确,用导数判别电 压移动方向,提高了判断的准确性^[8]。

与扰动法类似,电导增量法仍然要考虑步长 选择问题,控制精度的提高(测量导数需要较小 的步长)使其对传感器等硬件的要求也更高。

2 光伏最大功率与环境参数的关系

2.1 光伏电池的数学模型

在光伏发电的过程中,光伏电池将光能转

化为电能,在外电路中产生电流,产生的直流电 压和电流经过变流器转换为交流量后并入电网。

光伏电池本质上相当于平面二极管,在理想 的光照环境下,其工作原理可用单二极管等效电 路来描述,如图1所示。

图1 光伏电池等效电路

Fig.1 Equivalent circuit of photovoltaic battery 图 1 中, I_{sc} 为光伏电池产生的电流, I_{D} 为通过 PN结的总扩散电流,如下式所示:

$$I_{\rm D} = I_{\rm D0} \left(e^{\frac{qE}{AKT}} - 1 \right)$$
 (1)

其中

$$I_{\rm D0} = SqN_{\rm C}N_{\rm V} \left[\frac{1}{N_{\rm A}} \left(\frac{D_{\rm n}}{\tau_{\rm n}}\right)^{\frac{1}{2}} + \frac{1}{N_{\rm D}} \left(\frac{D_{\rm p}}{\tau_{\rm p}}\right)^{\frac{1}{2}}\right] {\rm e}^{-\frac{E_{\rm g}}{kT}}$$
(2)

式中:q 为电子的电荷量, $q=1.6\times10^{-19}$ C;K 为玻 尔兹曼常数, $K=1.38\times10^{-23}$ J/K;A 为光伏电池常 数因子; I_{100} 为无光照条件下光伏电池饱和电流; S 为 PN 结面积; N_c , N_v 分别为导带和价带的有效 态密度; N_A , N_D 分别为受主杂质和施主杂质浓 度; D_n , D_p 分别为电子和空穴的扩散系数; τ_n , τ_p 分别为电子和空穴的少子寿命; E_g 为半导体材料 的带隙。

根据图1,可得负载电流为

$$I = I_{sc} - I_{D0} \left[e^{\frac{q(U_{pv} + IR_{s})}{AKT}} - 1 \right] - \frac{U_{pv} + IR_{s}}{R_{sh}} \quad (3)$$

式中:R_s为串联电阻;R_{sh}为旁漏电阻。

2.2 光伏电池的特性曲线

光伏电池的输出功率特性曲线为一条单峰 曲线,峰值位置即为其最大功率点。现实环境 中,光伏电池输出特性曲线在不同的光照和温度 条件下如图2和图3所示。图2为光伏电池随温 度变化的输出特性曲线,可以看出,随着温度的 升高,最大功率P_m出现一定程度降低,最大功率 点电压降低。图3为光伏电池随光照强度变化的 输出特性曲线,可以看出,光照强度越强,最大功 率P_m越大。

在光照强度或温度变化时,光伏电池的输出 特性不一,最大功率点也随之变化。因此为提高 发电效率,需要有着良好跟踪性能的MPPT算法。

Fig.2 Photovoltaic P-U curves at different temperatures

图3 光照强度变化下光伏P---U特性曲线 Fig.3 Photovoltaic P-U curves under different light intensity

基于改进电导增量法的变步长 3 MPPT原理

3.1 算法的原理

光伏发电的 MPPT 系统的主要结构如图4 所 示,由光伏组件、MPPT控制器、Boost转换器¹⁹和 负载构成。

Fig.4 MPPT system structure diagram

传统变步长法通常用光伏电池的功率与电 压的比值(即dP/dU)代替固定步长参数,并引用 一个常数系数做系统修正^[10]。光伏电池的输出特 性有着如下关系:

$$\frac{\mathrm{d}P}{\mathrm{d}U} = \frac{\mathrm{d}(UI)}{\mathrm{d}U}$$
$$= I + U \frac{\mathrm{d}I}{\mathrm{d}U} \tag{4}$$

由式(4)可知,光伏电池的输出特性与电流I 的有着明显关系。故本文在传统变步长方案基

础上,进一步引入与电流相关的系数,对dP/dU值 进行修正,以降低电流变化对输出特性的影响。

3.2 改进的MPPT算法设置

设变步长系数为d(k),步长变化量为 δ ,则步 长D(k)可表示为

$$D(k) = D(k-1) \pm d(k) \left| \frac{\mathrm{d}P}{\mathrm{d}U} \right|$$
$$= D(k-1) \pm \delta \tag{5}$$

变步长系数d(k)选取有如下3种:

$$d(k) = \frac{1}{I}$$

$$d(k) = \frac{1}{I^{2}}$$

$$d(k) = \frac{1}{\sqrt{I}}$$
(6)

针对仿真结果,采用TOPSIS法构建评价指 标,通过与理想化目标的接近程度对3种方案进 行相对优劣排序,从而评估并选取最合适的d(k)。 本文的MPPT算法流程图如图5所示。

Fig.5 Flow chart of improved variable step size MPPT

3.3 仿真分析

施加如图6所示的光照强度和温度条件, 1.5 s时光照强度降低,3 s时温度降低,4.5 s时 光照强度和温度同时上升。观察光照、温度条 件变化的情况下,电压、功率曲线的响应规律。

针对3种变步长系数选取方案,本文建立的

MPPT模型的运行结果如图7~图9所示。

由图7可以看出,在1.5 s时光照强度降低, 电压和功率曲线随之明显降低;在3 s时温度降低,电压和功率曲线略微上升;在4.5 s时光照强 度和温度升高,电压和功率曲线明显上升。

由图 7~图9,可以初步看出,d(k)=1/I曲线在 稳定后波动的幅度明显较大,d(k)=1/I²与d(k)= 1/√I曲线总体较为接近,但d(k)=1/I²曲线在光 照、温度条件变化的情况下达到稳定后波动更加 平整,有着较好的跟踪效果。

4 基于TOPSIS决策法的性能评估

4.1 功率变化曲线评估指标

为了科学、可靠地评估 MPPT 算法的综合性 能,现从以下几项性能指标进行综合评估¹⁶,根据 指标为效益型或成本型,对其中的数据进行标准 化处理。

1)上升时间 $\tau_{r^{\circ}}$

上升时间 r,为曲线上升到稳态功率的 95% 所用的时间,该指标反应了算法跟踪的速度。

2) 光照强度变化下的响应时间 τ_1 。

光照强度变化下的响应时间 r₁为曲线在光 照强度变化后达到稳态所用的时间,该指标反映 了算法对光照条件变化的响应速度。

3) 温度变化下的响应时间 $\tau_{2\circ}$

温度变化下的响应时间 τ₂为曲线在温度变 化后达到稳态所用的时间,该指标反映了算法对 温度条件变化的响应速度。

4)光照温度同时变化下的响应时间 τ₃。

光照温度同时变化下的响应时间 r₃为曲线 在光照强度和温度同时变化后达到稳态所用的 时间,该指标反映了算法对光照条件变化的响应 速度。

5) 跟踪能量损耗 $\eta_{t^{\circ}}$

将算法模型在迭代步骤中进行积分,可以得 到功率曲线上升过程中产生的总能量,其与这段 时间中的参考功率之差为跟踪过程中的损耗能 量,如图10所示。

该指标可用跟踪效率η表示,表达式如下:

跟踪效率 η 标准化后得到该项指标 η_{i} 。

6)稳态性 Δ 。

稳态功率曲线波动幅值与稳态功率的比,反 映了算法跟踪的稳定性能。

稳态性为计算得到各指标数据如表1所示, 各指标数值在0~1区间,越接近1,表明该项数据 越好。

	Tab.1	Standardized index data	
	d(k)=1/I	$d(k) = 1/I^2$	$d(k)=1/\sqrt{I}$
$ au_{ m r}$	1	0.110 3	0
τ_1	0.911 4	1	0
$ au_2$	0	0.360 4	1
$ au_3$	1	0	0.156 0
$\eta_{\scriptscriptstyle \mathrm{t}}$	0	1	0.963 3
Δ	0	1	0.843 4

表1 各指标数据标准化

4.2 关键指标与指标权重的确定

4.2.1 层次分析法

将上述n=6项指标作为准则层,m=3种变步 长系数的选取作为决策层,用层次分析法求取准 则层权重。

对6个评价指标构造判断矩阵:

$$\boldsymbol{A} = [a_{ij}]_{n \times n} \tag{8}$$

式中:a_{ij}为指标i相对于指标j的重要性之比。

一致性指标如下:

$$CI = \frac{\lambda_{\max} - n}{n - 1} \tag{9}$$

式中: Amax 为所构造的判断矩阵的最大特征值。

一致性比例如下:

$$CR = \frac{CI}{RI} \tag{10}$$

式中:RI为随机一致性指标。

当*CR*<0.1时,一致性检验通过,说明判断矩阵构造合理。

通过层次分析法得到的6个指标的权重为 [0.1684,0.0705,0.0968,0.1684,0.4939,0.8277]。 4.2.2 熵值法

熵值法是根据指标的离散程度来判断该指 标的综合影响的一种数学方法。

第i个对象在第i项指标下的特征比重为

$$P_{ij} = x_{ij} / \sum_{i=1}^{m} x_{ij}$$
(11)

取 $k = \frac{1}{\ln m}$,则第j项指标的熵值为

$$e_{j} = -k \sum_{i=1}^{m} P_{ij} \ln(P_{ij})$$
(12)

计算指标的差异性系数:

 $g_j = 1 - e_j \tag{13}$

确定权重:

$$q_{j} = \frac{g_{j}}{\sum_{i=1}^{m} g_{j}} \qquad j = 1, 2, \cdots, n$$
(14)

通过熵值法得到6个指标的权重为[0.2809, 0.1044,0.1589,0.2463,0.1040,0.1056]。 4.2.3 综合权重

采用层次分析法和熵值法的组合赋权法可 以弥补单一赋权带来的不足,实现主客观的统一。 综合权重*w*,如下:

$$w_j = \frac{\sqrt{p_j q_j}}{\sum_{j=1}^n \sqrt{p_j q_j}}$$
(15)

式中: *p*_j为层次分析法得到的权重; *q*_j为熵值法得到的权重。

通过组合赋权法得到6个指标的综合权重为[0.188 6,0.074 4,0.107 6,0.176 6,0.196 5,0.256 4]。

4.3 TOPSIS决策法

TOPSIS决策法是一种多属性决策法,可以对评估对象进行相对优劣排序^[7]。

共有 m=3个评价对象、n=6个评价指标构成的矩阵如下:

 $X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$ 其标准化矩阵如下

$$\boldsymbol{Z} = \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1n} \\ z_{21} & z_{22} & \cdots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{m1} & z_{m2} & \cdots & z_{mn} \end{bmatrix}$$

确定正理想解Z⁺如下:

$$Z^{-} = \{ z_{1}, z_{2}, \cdots, z_{n} \}$$

计算第i个评价对象到最大值,即正理想解 的距离为

$$D_i^* = \sqrt{\sum_{j=1}^n w_j (Z^* - z_{ij})}$$
(16)

计算第i个评价对象到最小值,即负理想解的距 离为

$$D_i^- = \sqrt{\sum_{j=1}^n w_j (Z^- - z_{ij})}$$
(17)

则相对贴近度S_i为

$$S_{i} = \frac{D_{i}^{-}}{D_{i}^{+} + D_{i}^{-}}$$
(18)

对3种方案的相对优劣程度进行排序,显然 有0<S<1,目S越大,D⁺越小,表明结果更接近最 大值。

4.4 综合评估结果分析

通过TOPSIS决策法得到3个方案的综合评 价结果如表2所示。

表2 TOPSIS决策法评价结果

2

	Tab.2 Evaluation result of TOPSIS method			
d(k)	相对贴近度 S_i	TOPSIS排序		
1/I	0.465 9	3		
$1/I^{2}$	0.548 0	1		

0.523 4

通过以上评价结果数据可以看出,三种变步 长系数选取方式中, $d(k)=1/l^2$ 方案最优。该方案 在跟踪过程中,能量效率较高,有着较好的稳态 性,跟踪精度较高,综合来说有最好的最大功率 点跟踪性能。

应用案例 5

 $1/\sqrt{I}$

本文选取河北承德某光伏发电站作为最大 功率仿真测试目标,研究时间段为2019年9月--2019年10月。该发电站位于(116.65°E,41.20°N), 海拔为1472m,研究时间内从早晨6:00到傍晚 18:00,传感器实时记录光照强度、温度等气象数 据,每隔30min取其平均值记录到数据库中。选 择9月9日的数据进行验证,当日天气为小雨,温 度为4.8 ℃~13.1 ℃,记录的光照强度与温度数据 如图11所示。

将图11所示数据代入本文的MPPT方案中,

得到的最大功率跟踪结果如图12所示。

从图 12 可以看出,本文的 MPPT 方案可以实 时跟踪光伏单元的最大功率,跟踪曲线的变化趋 势接近光照曲线,同时也一定程度受到温度变化 的影响,符合前文的分析与仿真结果。

结论 6

针对传统的 MPPT 算法的震荡问题和输出特 性受电流影响较大的问题,本文提出一种基于改 进电导增量法的 MPPT 算法,引入与电流 I 相关的 系数对特性曲线 dP/dU 的值进行修正,并基于 TOPSIS决策法,通过6项评价指标对3种变步长 系数方案进行评估,确定了性能最好的方案,对 光伏发电系统 MPPT 算法的构建及性能评估有着 参考意义。

参考文献

[1] 艾永乐,刘群峰,韩朝阳,等.基于改进扰动观察法的光伏 MPPT策略[J]. 武汉大学学报(工学版), 2020, 53(4): 339-344

Ai Yongle, Liu Qunfeng, Han Chaoyang, et al. Photovoltaic MPPT strategy based on improved perturbation and observation method[J]. Engineering Journal of Wuhan University, 2020, 53 (4):339-344.

[2] 楼伯良,吴俊,黄弘扬,等.基于改进型扰动观察法的 MPPT 控制策略研究[J]. 浙江电力, 2019, 38(9): 95-99. Lou Boliang, Wu Jun, Huang Hongyang, et al. Research on MPPT control strategy based on improved perturbation observation method[J]. Zhejiang Electric Power, 2019, 38(9):95-99.