一种输入并联输出串联模块化LCC谐振变换器

杨晓光^{1,2},李宇麒^{1,2},高正^{1,2},席利根^{1,2},温静^{1,2}

(1.省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津 300130;2.河北省电磁场与电器可靠性重点实验室(河北工业大学),天津 300130)

摘要:提出了一种输入并联输出串联(IPOS) DC-DC 变换器,该变换器基于输出电容滤波型单相全桥 LCC 变换器。不同于传统 IPOS 变换器,该变换器将后级全桥整流电路交错连接,以克服模块间参数差异对模块间 输出均压特性的影响。对所提出的变换器的工作原理、工作模式及均压特性进行了详细的分析。试制了实验 样机,对比测试了传统变换器与新型变换器模块间参数差异对均压特性的影响,并进一步测试了输入电压突 变和负载突变情况下新型变换器的均压特性。实验结果表明,新型变换器在稳态和暂态情况下都具有很好的 均压特性,无需额外均压控制。

关键词:DC-DC变换器;模块化;谐振电路;输入并联输出串联;均压 中图分类号:TM28 文献标识码:A DOI:10.19457/j.1001-2095.dqcd20872

An Input-parallel Output-series LCC Resonant Converter

YANG Xiaoguang^{1,2}, LI Yuqi^{1,2}, GAO Zheng^{1,2}, XI Ligen^{1,2}, WEN Jing^{1,2}

(1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment(Hebei University of Technology), Tianjin 300130, China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province(Hebei University of Technology), Tianjin 300130, China)

Abstract: An input-parallel output-series (IPOS) DC-DC converter was presented based on a single-phase full-bridge LCC converter with an output filter capacitor. Different from the traditional IPOS converter, the proposed converter was interleaved connected the full-bridge rectifier with the secondary side of the transformer to overcome the influence of parameter differences between modules on the output voltage-sharing between modules. The operating principle, working mode and voltage equalization characteristics of the proposed converter were analyzed in detail. The experimental prototype was designed and made, the influence of the parameters difference between the conventional converter and the new converter module on the voltage equalization characteristic was tested and compared, and the voltage equalization characteristics of the new converter has good voltage equalization characteristics under both steady state and transient conditions, without additional voltage equalization control.

Key words: DC-DC converter; modular; resonance circuit; input-parallel output-series (IPOS); voltage-sharing

高压 DC-DC 变换器具有广泛的应用范围,如 激光器、X 射线电源、分析仪器与静电除尘等领 域^[1-4]。串并联谐振式(LCC)变换器拓扑由于其 自身的软开关能力和升压特性,广泛应用于高压 变换器中^[5]。高压变换器一般由高频 DC-AC 逆 变器、谐振腔、高压变压器和整流器组成,其中变 压器是 DC-DC 变换器的关键部分,是实现更高电 压等级和更高功率等级的瓶颈^[6-7]。因此,为了降 低单个变压器的电压应力,通常采用后级添加倍 压电路(CW全波倍压电路、单极性半波倍压电路 等)或多个子模块串并联的方法构成不同类型的 高压DC-DC变换器,以满足高输出电压和高额定 功率值的要求^[8-10]。在这些类型的变换器中,输 入并联输出串联(IPOS)模块化DC-DC变换器具 有子模块组合灵活的特点,因而能够产生更高的 功率或更高的输出电压。然而,各模块的器件参

作者简介:杨晓光(1971一),男,博士,教授,Email:xgyang@hebut.edu.cn

数难以达到完全一致,尤其是高压变压器的分布 参数可能存在较大差异。模块间参数的差异可 能会严重影响各模块之间的均压,因而限制了IP-OS DC-DC变换器的应用。为了保证变换器的可 靠工作,必须确保各模块的输出电压均衡^[11]。

目前解决模块间均压问题的方法一般是通 过主动的控制措施,例如:文献[12]提出了一种最 大电压均压法,即以最大的输出电压为参考调节 各模块输出电压;文献[13]提出了一种主从控制 策略和分布式电压控制器来实现输出功率的均 衡,另外还有同时控制均压均流的双环控制法^[14] 等。这些控制策略,都需要在各模块上配置电压 或电流检测装置,增加了电路的复杂性,降低了 系统的整体可靠性^[15]。针对这一问题,本文提出 了一种具有自动均压输出特性的 IPOS 模块化 LCC 变换器,不需要添加外围控制电路和复杂的 控制算法即可实现模块间自动均压。

1 变换器结构和工作原理

为了便于分析,本文以两模块为例给出所提 出的 IPOS 变换器,其电路拓扑如图 1 所示。对比 传统 IPOS 变换器^[16-17],新型拓扑是在传统拓扑的 基础上,将两个模块的整流输出电路交错连接,以 实现均压的目的。在模块 1(图 1 Module-1)中, $Q_{i,1}(i=1,2,3,4)$ 为4个开关管; $D_{i,1}(i=1,2,3,4)$ 为 其寄生二极管; $L_{s,1}$, $C_{s,1}$, $C_{p,1}$, T_{r1} 分别为串联电感、 串联电容、并联电容和变压器; $D_{Ri,1}(i=1,2,3,4)$ 为整流电路的4个二极管; $C_{s,1}$ 为输出滤波电容; 变压器变比1: k_1 ; $I_{s,1}$ 为输出电流。模块2(图 1 的 Module-2)中的各个参数定义相同。

Fig. 1 Topology of the proposed IPOS converter

本文以两模块串联电容 C_s 参数不一致($C_{s,1} < C_{s,2}$)为例,来分析参数差异对均压特性的影响。 假设LCC变换器工作于第一种电感电流断续模式(discontinuous current mode 1, DCM1)^[18],则IP- OS变换器的主要波形如图2所示。由于1个周期 内前半周期[t₀≤t < t₄]与后半周期[t₄≤t < t₈]的电路 特性对称,因而只给出前半周期的等效电路(见 图3~图9)和模态分析。

1)模态 $1[t_0 \le t < t_1]$:模态 1 的等效电路图如图 3 所示。在 t_0 时刻之前各模块的串联谐振电流 $i_{r,j}$ (j=1,2)为零,所以 t_0 时刻开关管 $Q_{1,j}$ 和 $Q_{4,j}$ 零电流 开通。 $i_{r,j}$ 流经 $Q_{1,j}$, $C_{s,j}$, $L_{s,j}$, T_{ij} , $Q_{4,j}$,此时, $L_{s,j}$ 和 $C_{s,j}$ 两元件谐振。整流二极管 $D_{R1,j}$, $D_{R4,j}$ 导通,并联谐 振电容 $C_{p,j}$ 上电压 $V_{Cp,j}$ 被输出电压钳位在 $V_{o,j}/k_j$, 两 模块分别向各自的副边滤波电容传能。

2) 模态 $2[t_1 \le t < t_{1'}]$: 模态 2 的等效电路图如图 4 所示。由于 $C_{s,1} < C_{s,2}$, 模块 1 谐振电流 $i_{r,1}$ 必先 于模块 2 谐振至过零点(即 t_1 时刻)。 t_1 时刻之后, $i_{r,1}$ 反向增大, 流经 $D_{4,1}$, $C_{p,1}$, $L_{s,1}$, $C_{s,1}$, $D_{1,1}$, 此时, $L_{s,1}$, $C_{s,1}$ 和 $C_{p,1}$ 三元件谐振。 $C_{p,1}$ 通过 $i_{r,1}$ 放电, $V_{Cp,1}$ 从 $V_{o,1}/k_1$ 下降。模块 1 的谐振能量流向电源侧, 副 边二极管均截止, T_{r1} 原副边之间不再有能量传 递, $C_{o,1}$ 向负载供电。而模块 2 仍重复模态 1 的过 程向 $C_{o,2}$ 传能。

3) 模态 $3[t_{1'} \le t < t_2]$:模态 3 的等效电路图如图 5 所示。在 $t_{1'}$ 时刻,模块 2 谐振电流 $i_{r,2}$ 正向谐振 至零,之后反方向增加,流经 $D_{4,2}, C_{p,2}, L_{s,2}, C_{s,2},$ $D_{1,2}, 此时, L_{s,2}, C_{s,2} 和 C_{p,2} 三元件谐振。C_{p,2}通过$ $<math>i_{r,2}$ 放电, $V_{c_{p,2}}$ 从 $V_{o,2}/k_2$ 下降。模块 1 的谐振能量流

Fig.4 Mode 2 $(t_1 - t_{1'})$

向电源侧,副边二极管均截止,T₂原副边之间 不再有能量传递,C_{0.2}向负载供电。而模块2仍然 重复模态2的过程。此时,负载由C_{0.1}和C_{0.2}共同 供电。

Fig.5 Mode 3 $(t_{1'}-t_2)$

4) 模态 $4[t_2 \le t < t_2]$: 模态 4 的等效电路图如图 6 所示。 t_2 时刻, 模块 1 的并联谐振电容 $C_{p,1}$ 两端 电压达到 $-V_{o,2}/k_1$, 整流二极管 $D_{R2,1}$, $D_{R3,1}$ 导通, 此 后 $V_{Cp,1}$ 被钳位至 $-V_{o,2}/k_1$ 。谐振电流 $i_{r,1}$ 流经 $D_{4,1}$, $L_{s,1}$, $C_{s,1}$, T_{r1} , $D_{1,1}$, 此时, $L_{s,1}$ 和 $C_{s,1}$ 两元件谐振。模 块 1 谐振网络的能量通过模块 2 的电容向负载侧 传递能量, 实现了两模块间能量的交换。模块 2 仍重复模态 3 的过程。

5) 模态 5[$t_2 \le t < t_3$]: 模态 5 的等效电路图如图 7 所示。 t_2 时刻, 模块 2 的并联谐振电容 C_{p,2}两端 电压也达到 $-V_{0,1}/k_2$, 整流二极管 D_{R2,2}, D_{R3,2}导通, 此后 $V_{C_{p,2}}$ 被钳位至 $-V_{0,1}/k_2$ 。此时, 模块 2 谐振网 络的能量通过模块 1 的电容向负载侧传递能量, 也实现了两模块间能量的交换。模块1仍重复模态4的过程。这样,模块1向T_{r2}副边供电,模块2 向T_{r1}副边供电,实现了能量的交换。

7) 模态 7[$t_{3} \leq t < t_{4}$]:模态 7 的等效电路图如图 9 所示。 t_{3} ,时刻,模块 2 的谐振电流 $i_{r,2}$ 也谐振至 零。同理, t_{3} ,时刻之后, $i_{r,2}$ 保持为零, T_{r2} 原副边之 间不再有能量传递, $C_{o,2}$ 向负载供电。模块 1 仍重 复模态 6 的过程,此时,负载侧由 $C_{o,1}$ 和 $C_{o,2}$ 共同 供电。

2 均压性能分析

由模态分析和图2的输出电流波形可知,一 个周期内:模块1在t₀-t₁和t₆-t₇时间段内,向模块 1的等效负载传能;而在t₄-t₅和t₂-t₃时间段内,向 模块2的等效负载传能。反之,模块2在t₄-t₅和 t₂-t₃时间段内,向模块1的等效负载传能;而在 t₀-t₁和t₆-t₇时间段内,向模块2的等效负载传 能。可见,新型变换器的整流电路不同于传统IP-OS变换器桥式整流电路的传能方式,其利用两模 块交替向自己和相邻的等效负载传能的特点,使 得模块间的等效负载在模块间参数不一致时也 能趋于均衡,从而能够实现输出均压。

为了进一步说明其均压特性,本文采用状态 空间平均法^[15]对所提出的变换器进行了分析。

令 *T_{ab}*(*T*₀₁, *T*₁₁, *T*₁₂, …, *T*₇₈)表示各模态的时间间隔。1个周期内的各个工作模态中,IPOS 变换器的电路状态都可以用一系列线性状态空间方程来表示。如图 3~图 9 所示,该变换器 1 个周期内有 14 个工作模态,其相应的状态空间方程 组为

$$\boldsymbol{x} = A_i \boldsymbol{m} \ (i = 1, \cdots, 14) \tag{1}$$

其中

$$\mathbf{x} = \begin{bmatrix} L_{\mathrm{s},1} \frac{\mathrm{d}i_{\mathrm{r},1}}{\mathrm{d}t} \\ \\ L_{\mathrm{s},2} \frac{\mathrm{d}i_{\mathrm{r},2}}{\mathrm{d}t} \end{bmatrix}^{\mathrm{T}}$$

 $m = [V_{0,1} \quad V_{0,2} \quad V_{Cs,1} \quad V_{Cs,2} \quad V_{in} \quad V_{Cp,1} \quad V_{Cp,2}]^T$ 式中: m为输入独立电源与状态变量的线性组合 而成的矩阵; $A_1 \sim A_{14}$ 为各个工作模态的系统矩阵, 与电路拓扑有关,可分别列出。

对状态空间方程组进行平均运算,即有<**x**> = <**A**_i**m**> = <**A**>·**<m**>,可具体展开为

$$\begin{bmatrix} L_{s,1} \frac{d < i_{r,1} >}{dt} \\ L_{s,2} \frac{d < i_{r,2} >}{dt} \end{bmatrix} = \cdot \[< V_{o,1} > < V_{o,2} > < V_{Cs,1} > < < V_{cp,1} > < V_{Cp,2} > \]^{T}$$

$$(2)$$

令
$$T_{s}$$
为1个开关周期,则可表示为
 \$\langle A \rangle = \frac{1}{T_{s}} \[T_{01}A_{1} + T_{11'}A_{2} + T_{1'2}A_{3} + \dots + T_{7'8}A_{14}\]\$
\(3\)

由于1个周期内状态变量的平均值等于零, 即<x>=0, <V_{Cs2}>=<V_{Cn2}>=0, <V_{Cs1}>=<V_{Cn1}>=0, 将其代入式(2),可得:

$$\begin{cases} -\frac{T_{01} + T_{67}}{k_1} \cdot \langle V_{0,1} \rangle + \frac{T_{45} + T_{23}}{k_1} \cdot \langle V_{0,2} \rangle + (T_{03} - T_{47}) \cdot \langle V_{in} \rangle = 0 \\ \frac{T_{45'} + T_{2'3'}}{k_2} \cdot \langle V_{0,1} \rangle - \frac{T_{01'} + T_{6'7'}}{k_2} \cdot \langle V_{0,2} \rangle + (T_{03'} - T_{47'}) \cdot \langle V_{in} \rangle = 0 \end{cases}$$

$$(4)$$

由图2可知,各单模块LCC的模态转换时间 (T_{ab})可由电路参数表示,其中 $T_{03}=T_{47}$, $T_{03}=T_{47}$, $T_{01}=T_{45}$, $T_{67}=T_{23}$, $T_{01'}=T_{45'}$, $T_{67'}=T_{23'}$,将其代入式 (4)中,即可解得< $V_{0,1}>=< V_{0,2}>$ 。这说明当两模块间 参数不一致时,输出电压总能在稳态时达到均衡。

3 实验

本文试制了一台两模块样机,用于对比测试 传统 IPOS 变换器与所提出变换器的性能。通过 改变后级整流块的连接方式,其它方面都相同, 即可实现两种变换器之间的切换。

变换器的基本参数为:输入电压 V_{in} =25 V,输 出功率 P_0 =400 W,各模块的谐振参数为 $L_{s,1}=L_{s,2}$ = 3 μ H, $C_{s,1}=C_{s,2}$ =5 μ F, $C_{p,1}=C_{p,2}$ =2.1 μ F,变压器变比 $k_1=k_2$ =7.5,开关频率 f_s =20 kHz。变换器无外围控制电 路,驱动脉冲由型号为TMS320F28335的DSP产生。

对传统变换器与新型变换器在两模块间参数不一致情况下进行测试:1) $C_{s,1}=5 \mu F, C_{s,2}=4 \mu F$ 情形;2) $k_1=7.8, k_2=7.2$ 情形;3) $C_{s,1}=5 \mu F, k_1=7.8;$ $C_{s,2}=4 \mu F, k_2=7.2$ 情形。图 10 为 $C_{s,1}=5 \mu F, C_{s,2}=4 \mu F$ 时两种变换器实验波形。

图 11 为当 k₁=7.8, k₂=7.2 时, 两种变换器实验 波形。

- 图 11 k₁=7.8,k₂=7.2 时两种变换器实验波形
- Fig.11 Experimental waveforms of the two converters in the case of k_1 =7.8 and k_2 =7.2

图 12 为 C_{s,1}=5 μF, k₁=7.8; C_{s,2}=4 μF, k₂=7.2 时 两种变换器实验波形。

图 12 $C_{s,1}=5 \mu F, k_1=7.8; C_{s,2}=4 \mu F, k_2=7.2$ 时两种变换器实验波形 Fig.12 Experimental waveforms of the two converters in the case of $C_{s,1}=5 \mu F, k_1=7.8$ and $C_{s,2}=4 \mu F, k_2=7.2$

由图 10~图 12 可知,模块间的参数差异无论 是对传统变换器还是新型变换器中的谐振电流 影响不大。然而,传统变换器中子模块的输出电 压受参数差异影响较大,模块间电压不均衡现象 严重,相比之下,新型变换器则拥有良好的输出 均压特性。

图 10~图 12 中的子模块输出电压值如表 1 58 所示。

表1 传统变换器与新型变换器的模块输出电压

Tab.1 Output voltage of module converters for conventional

converter and proposed converter				
Parameters Specification	传统变换器 输出电压		新型变换器 输出电压	
	模块1 电压/V	模块2 电压/V	模块1 电压/V	模块2 电压/V
$C_{s,1}=5 \ \mu F, C_{s,2}=4 \ \mu F$	111	56.0	84.3	83.5
$k_1 = 7.8, k_2 = 7.2$	102	81.0	92.5	91.7
$C_{s,1}=5 \ \mu F, k_1=7.8;$ $C_{s,2}=4 \ \mu F, k_2=7.2$	118	46.9	85.1	84.0

图 13 为所提出的变换器在图 12 参数配置下 受输入电压 V_{in}或负载 R_o的阶跃扰动时两模块输 出电压的暂态波形,其中,图 13a 为 V_{in}从 25 V突 变至 19 V时,输出电压的暂态波形;图 13b 为 R_o 从 60 Ω跳变至 100 Ω时,输出电压的暂态波形,t_r 时刻表示发生阶跃扰动,t_p时刻表示输出电压达 到最大超调量,t_s时刻表示输出电压达到稳态。

图 13 新型变换器的暂态特性 Fig. 13 Transient response of the proposed converter

由图 13 可知,图 13a 在 V_{in}突变下的暂态调节 时间为47 ms,输出电压波动为23 V,并无超调; 图 13b 在 R_o突变下的暂态调节时间为45 ms,输出 电压波动27 V,最大超调量6 V,峰值时间22 ms。 由图 13 可以看出,新型变换器在多种参数差异 下,受到输入电压 V_{in}的阶跃突变或是负载电阻 R_o 的阶跃突变时,都可以达到稳态,这说明所提出 的变换器整体是稳定的。并且,在暂态过程(*t_i*-*t_s*) 中仍没有出现输出电压失衡的现象,而文献[12-14] 虽然通过控制策略也能在较短的调节时间内达 到模块间均压,但在动态调节过程中不能保持模 块间电压的均衡。

4 结论

本文提出了一种具有自动均压输出特性的 IPOS模块化LCC DC-DC变换器,即使模块间存 在较大的参数差异,该变换器也能在输入电压突 变或负载突变的情况下实现均压。该变换器有 效地克服了传统变换器额外控制措施所带来的 电路复杂性,提高了电路稳定性和可靠性。该变 换器的特点使之可应用于高压电源。

参考文献

- [1] 游利兵,程超,方晓东.全固态高压脉冲电源在半导体光刻 光源中应用[J].强激光与粒子束,2019,31(4):114-122.
- [2] 刘玺尧,曾国强,谭承君,等.基于罗耶谐振的微型X射线管 高压电源的设计[J].核技术,2013,36(8):66-70.
- [3] 周好斌,钟桂香,王毅.静电除尘器用智能高压直流电源的研制[J].高电压技术,2005,31(5):61-63.
- [4] 刘军.LCC-SPRC高压高频大功率电除尘电源的理论分析与 功率参数设计[D]. 杭州:浙江大学,2010.
- [5] Batarseh I, Liu R, Lee C Q, et al. Theoretical and experimental studies of the LCC-type parallel resonant converter[J]. IEEE Transactions on Power Electronics, 1990, 5(2):140–150.
- [6] Mao S, Li C, Li W, et al. Unified equivalent steady-state circuit model and comprehensive design of the LCC resonant converter for HV generation architectures[J]. IEEE Transactions on Power Electronics, 2017, 33(9):7531–7544.
- [7] Jang S R, Yu C H, Ryoo H J. Trapezoidal approximation of LCC resonant converter and design of a multistage capacitor charger for a solid-state marx modulator[J]. IEEE Transactions on Power Electronics, 2018, 33(5):3816–3825.
- [8] Hsu W C , Chen J F , Hsieh Y P, et al. Design and steady-state analysis of parallel resonant DC-DC converter for high-voltage power generator[J]. IEEE Transactions on Power Electronics, 2017,32(2):957-966.

- [9] Jang S R, Seo J H, Ryoo H J. Development of 50 kV 100 kW three-phase resonant converter for 95 GHz gyrotron[J]. IEEE Transactions on Industry Electronics, 2016, 63 (11): 6674– 6683.
- [10] Fu D, Lee F C, Qiu Y, et al. A novel high-power-density threelevel LCC resonant converter with constant-power-factor-control for charging applications[J]. IEEE Transactions on Power Electronics, 2008, 23(5):2411–2420.
- [11] 张容荣,阮新波,陈武.输入并联输出串联变换器系统的控制策略[J].电工技术学报,2008,23(8):86-93.
- [12] Siri K, Willhoff M, Conner K. Uniform voltage distribution control for series-input parallel-output, connected converters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1269– 1279.
- [13] Lian Y, Adam G, Holliday D, et al. Modular input-parallel output-series DC/DC converter control with fault detection and redundancy[J]. IET Generation, Transmission & Distribution., 2016,10(6):1361-1369.
- [14] Qu Lu, Zhang Donglai, Bao Zhiyun. Output current-differential control scheme for input-series-output-parallel connected modular DC-DC converters[J]. IEEE Transactions on Power Electronics, 2017, 32(7):5699–5711.
- [15] Shi Jianjing, Liu Tianji, Cheng Juan, et al. Automatic current sharing of an input-parallel output-parallel (IPOP)-connected DC-DC converter system with chain-connected rectifiers[J]. IEEE Transactions Power Electronics, 2015, 30(6):2997-3016.
- [16] Pokryvailo A, Carp C, Scapellati C. A 100 kW high voltage power supply for dual energy computer tomography applications[J].
 IEEE Transactions on Dielectrics and Electrical Insulation., 2015,22(4):1945-1953.
- [17] Pokryvailo A, Carp C, Scapellati C. A high-power high-voltage power supply for long-pulse applications[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2604–2610.
- [18] Yang R, Ding H F, Xu Y, et al. An analytical steady-state model of LCC type series-parallel resonant converter with capacitive output filter[J]. IEEE Transactions on Power Electronics, 2014,29(1):328–338.

收稿日期:2019-09-17 修改稿日期:2019-11-01