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Optimal Pricing Strategy of Electric Vehicle Charging Stations Considering Carbon Emissions
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Abstract: In the context of carbon neutrality, an optimal pricing strategy for electric vehicle charging stations
considering carbon emissions was proposed. Firstly, a price response characteristic model of electric vehicle users
was constructed. Secondly, an optimal pricing model with the lowest carbon emission, the minimum load peak-
valley difference and the highest charging station revenue as the objectives was established and transformed into a
Markov decision process. Then, an improved proximal policy optimization (PPO) algorithm based on the time
difference error was proposed to improve the efficiency and stability of the algorithm. Finally, the example analysis
shows that the proposed pricing strategy can reduce the peak-valley difference of distribution network load and
improve the economic benefit and low carbon level of charging station.
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Fig.1 Response characteristics of charging electricity

prices for electric vehicle users
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