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Strong Grid Adaptive Optimization Strategy of Grid-forming Converter Based on Virtual Inductor
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Abstract: Grid-forming (GFM) converter is a voltage source and has good adaptability and frequency-voltage
support in weak grid, but is prone to oscillation instability in strong grid due to impedance characteristics. To solve
this problem, based on the analysis of the impedance characteristics of the GFM converter, an adaptive optimization
strategy of the GFM converter based on virtual inductance was proposed. In order to analyze the influence of
control mode on the grid-connected stability of GFM converter, the sequence impedance model of GFM converter
with direct amplitude-phase control was modeled in detail. Secondly, the influence of power grid and filter
inductance on the grid-connected stability of GFM converter was studied, and its instability scenario was defined.
Finally, a hardware-in-loop real-time simulation test platform based on RT-LAB and DSP controller was built, and
the strategy was experimentally tested from different virtual inductance parameters, which verifies the effectiveness
and superiority of the proposed strategy.
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Fig.1 Control system diagram of amplitude-phase

direct control GFM converter
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Fig.2  Frequency sweep verification diagram of sequence impedance

model of amplitude-phase direct control GFM converter
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Fig.3 Equivalent circuit diagram of GFM

converter grid-connected system
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after adding virtual inductance
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Fig.9  Optimization strategy for strong grid adaptability of

GFM converter based on virtual inductance
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