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Abstract: To address the issues of low accuracy and precision in transformer fault diagnosis, a transformer
fault diagnosis method based on an improved particle swarm optimization-long short-term memory (IPSO-LSTM)
network was proposed, integrating data feature selection and an improved particle swarm optimization algorithm.
Firstly, the raw dataset was preprocessed using the synthetic minority oversampling technique (SMOTE) to
increase the data volume. Secondly, the feature dimensions were expanded to 20 using the feature ratio method, and
the random forest (RF) algorithm was employed to evaluate feature importance and perform feature selection,
reducing the risk of overfitting. Subsequently, adaptive inertia weights were introduced to improve the PSO
algorithm, which was then utilized to optimize the hyperparameters of the LSTM network. Finally, the feature-
selected data was input into the model for transformer fault diagnosis. Results demonstrate that the proposed
diagnostic model achieves an accuracy of 91.6%. Compared with LSTM, HBA-LSTM, and PSO-LSTM diagnostic
models, the accuracy improves by 10.12%, 5.95%, and 3.57%, respectively, validating that the IPSO-LSTM
diagnostic model provides superior diagnostic accuracy and holds practical significance in the field of transformer
fault diagnosis.

Key words: transformer fault diagnosis; feature selection; random forest (RF) ; long short-term memory

(LSTM) network ; particle swarm optimization (PSO) algorithm

Fifi 5 K [ FEL Do) 285 1 AR AN DR 4, 2 AR I 1Y) AR TR AR R ) R G ) B A, R K E L )
KRB RS EZEMFFE K G wRE B CEEMEMN. B TRESNAS .
BEEWH  REdRHEL 5 H (23YDTPIC00320)

PEF T 525 (2001—) , 53 ML, EBEFSE )5 1) 45 ] TR , Email : 2057916167@qq.com
BINEE IR (1978—) , 5 1+, 282, T 8T 7 10 R TR LI A 34k, Email : ygenghuang@126.com

89



WA AR 20265F 564 F 1M

WARE S A TR AR S IPSO-LSTM 9 T JE 22 3 [ 4 h7

AEAGXE B, Hl s — B A 3 ™ S
PRI, % s o 1 i AR s 25 1) B RS X T
e r, [ ) B s A T R

T IR 2 s 45 1) i e A 00 = SR T
H Vs il SR 53 B (dissolved gas analysis, DGA)
AP BT T 2o 5k W E PR T
7% 514> (international electrotechnical commission,
IEC) $& i 9 FUARL Y L el R = F ARV A X Duval —
PR SR SR IX S A% G2 1A v U gk A e A
T AETE G T AN 4 RIS L R 22 30 S5 e '), Pt
BT REB AR 5 DCA 7 M 454 B il 244
WEFE AR SR 710 FH 8080 1 5 H AR 3 )l
A R PR TR E 12 M 2% (Tong short-term
memory , LSTM ) 7 (R PE RE , 285 S 1IE B MEAf % A
MR AR N P S s 05 /b5 SF )
HIL( support vector machine , SVM ) AR A A T
B T R . AR, LSTM B A [ B A7 A 4 ey 1%
RAESIA R B2 ) b N Jry BB e A0 T T, v iff 4%
TEAR KRR b A2 B 8CH 46 o it i 520 o SCHR[8]
185 Bl 2> B AR 158 R BE (synthetic minority overs-
ampling technique, SMOTE ) 5. 7: 9" S8 FEAS , I Fl]
FH DL 3392 00 Ak LSTM W 4%, ik 1 0B 47 78 JE 2%
WIS K, 45 W12y AUl i 40 B AR
T 20%, #ER AL TE T 10% A0 G A28 R AR
MR SR 1) B R S 50 R AR B HE AR M . [R] IS D
P i 1 A S A 0 BT ARE S ASE A (45 T s 1)1
SR A Bt st R ald . SCHR (918 BEAIL
XK (random forest, RF) 35 15 XF /N AY [ 52 38 TC A
B B 5 AT AR 48, JF A B T RF-LSTM
(8 5 BRI 2 TS AR, S 06 3R W AR S T LSTM HE A 2
P11 5.6% , (AL L T — FREVEZE . SCAR(10]
$E T — ok 7 BE L AL (particle swarm optimiza-
tion, PSO) 54k 5 KB IC AL W28 AH 25 5 (9 7K Hy
BSOS Wi 75 15 AT AR HERY LSTM H1 PSO-
SVM 1 BRI Wi 7 vk | 12 BRI 5 T 2R
FAE S A S (H AR B B — 1 2 44
PE TR FROR MUBBE T i, AR I TS ORI
14 [m] et

25 bRk AR SCER Y T — R AR TR AR L S
2l R T BEAL AL (improved particle swarm optimi-
zation , IPSO) 53 i UL AL A< A 1012 99 2% 1 7% s
A RIS WA o B 2 R R A R A A A A T
AL B, 25 B P B e O AR RN I 2 S (R, ORI ]
SMOTE B354 58 HA &, LA KR FRAAE LU(E YA

90

BEREASRAE Y e 22 20 4 ; HUC, (i HIBEHL AR ARG
T 4 WERRAIE B R FE AT HE Y, EBRTUARRHE,
W AR K Hh A 52 2 R, T e 1 e DI R
L DIAARZRAE A N5 A TR 2k PSO %
A St e 9 PSO B33 R A1 Ak LSTM e {1t 2
B B S ARG 5 i EOE R AT 728 T A
FEiZ W SRR W], R R A LA I
55 1212 M 4% (improved particle swarm optimiza-
tion-long short-term memory, IPSO-LSTM) ] i2 ¥t
H5 TR XA s 45 B 2 W v HA 5 s B A R
H. 5 kL B A 7k RV RE A7 (honey badger algo-
rithm , HBA) T L8, R B

1 FHkpm

1.1 SMOTE &i%

F T 72 T g I B 2 W A0 R vl R AR
AR, BT ALZ ALRE A L, 8 5 18 i 42
B o DRI — AR, AR SCR ) SMOTE 5332
KA BARREAS , AT 7 58 8080 42 0 E A7 3l B Il
Y. SMOTE Sk il i FEREAS K AR T [ 2R A
IELE b BEDLNE ESREAS , Lok S AN [ ¢
TEAEA LR S, R AR AT

1) 3D BERAEAS A D B AS v e IBORE:
A o, A Ry URT REAS 1) B, DL R S A A
M TR ZREAS S A S R AR Y R TGRS

2) T RRFEA R4 MRS FE A P17 L9135
KRR HEN X TR FEUEREAS o, WH A48
HBEHLIERE N A 2

3)HAEA B - 4% IR SR BB A

X =5, + 17X (x; — x,) (1)
e, DB S L DR xR 2 1Y
I ATABREAR j=1,2, - ks X, WTEREAS x, Fil 2,
Z A B R REAS s 2R[0, 12 ] A BEHLER .
1.2 RF&E*

RF J& — P 52 1%, 2% 2J (ensemble learning) J7
%, el R A PR, AT R e 2 A
W)@, 7E RF B  fif ] Bagging J7 4 X
FEAS, b 2 2/3 BYREAS BT TN ZRBE A, T A Bt
FH RN 25 1) Hi 40 D) e 5k 4y 4% S48 (out-of-bag,
00B) . FIH OOB %4l , RF LAY A% P-4 4% FFAE
XK R . I B B A B R A
S 29085 JE R % (mean decrease accuracy, MDA)
FRAR, PE A FRAE AR B AT R . e
KUWF



PR E SR T A AEMR L L IPSO-LSTM 49 7 JE 32 ¥ 44 1

B A AR 20265F H 564 F 1

1 &
MDA(XA_):NZMAJ»(Xk) (2)

Ao N PR B
T OU T MDAERR AR SR SR B =
1.3 LSTME:%

LSTM (i /2 28 70 H P FRARAS i A 99 55
BT BT TR T AR, R AR I B
SR, ARSI ME 1R,

Co

—»h,

\\< \\{ ‘\‘*
Bl AT i

BT LSTM &5 ALt
Fig.1 Basic structure of the LSTM network
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Fig.2  IPSO flowchart of IPSO-LSTM fault diagnosis
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Tab.1  Comparison of samples before and after augmentation
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Tab.2 20 Features to be selected with their numbers
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Fig.4 Feature importance sorted from high to low
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Fig.8 Fault diagnosis classification results

based on TPSO-LSTM model
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Tab.4  Diagnostic accuracy for different features
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Confusion Matrix for Test Data

1 1 6 ERRVY 25.0%
2 1 96.4% WREY/
31 2 1 1 LR 14.3%
4 92.9% BV
6 1 8 9 (YR 32.1%

87.5% 96.4% 100.0% 86.7% 162.8% 100.0%

1

|

|
%
15 1
:W(
|

|

|

|

|

|

I
I
I
|
I
|
I
|
1
|
1
|
1
|
:
(T 3.6% | \
1
I
1
I
1
I
I
1
I
I
I
1
I
I
I
I
I

12.5% | 3.6% 13.3% | 37.2%
1 2 3 4 5 6
fiRIIES

10 HBA-LSTM 43245 1
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Fig.11  PSO-LSTM classification results
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Tab.5 Diagnostic accuracy of different algorithms
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