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基于特征优选与 IPSO⁃LSTM的变压器故障诊断

胡俊泽 1，杨耿煌 1，2，耿丽清 1，2，刘新宇 1

（1.天津职业技术师范大学 自动化与电气工程学院，天津 300222；
2.天津职业技术师范大学 天津市信息传感与智能控制重点实验室，天津 300222）

摘要：针对变压器故障诊断精度差、准确率低的问题，提出一种基于数据特征优选与改进粒子群优化算法

的长短期记忆网络（IPSO-LSTM）的变压器故障诊断方法。首先对原始数据集进行预处理，使用合成少数类样

本过采样技术（SMOTE）扩充数据数量；其次利用特征比值法扩充特征维数至 20维，使用随机森林（RF）算法判

断特征重要程度进行特征优选，降低过拟合风险；然后引入自适应惯性权重对PSO算法进行改进，利用改进后

的PSO算法来优化LSTM最优超参数；最后输入特征优选后的数据进行变压器故障诊断。结果表明所构建的

故障诊断模型诊断精度为 91.6%。该优化模型与 LSTM，HBA-LSTM和 PSO-LSTM诊断模型相比，准确率分别

提高了 10.12%，5.95%，3.57%，证明 IPSO-LSTM诊断模型有更高的诊断准确率，在变压器故障诊断领域有一定

的实际意义。
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Abstract：To address the issues of low accuracy and precision in transformer fault diagnosis，a transformer

fault diagnosis method based on an improved particle swarm optimization-long short-term memory（IPSO-LSTM）

network was proposed，integrating data feature selection and an improved particle swarm optimization algorithm.

Firstly，the raw dataset was preprocessed using the synthetic minority oversampling technique（SMOTE）to

increase the data volume. Secondly，the feature dimensions were expanded to 20 using the feature ratio method，and

the random forest（RF）algorithm was employed to evaluate feature importance and perform feature selection，

reducing the risk of overfitting. Subsequently，adaptive inertia weights were introduced to improve the PSO

algorithm，which was then utilized to optimize the hyperparameters of the LSTM network. Finally，the feature-

selected data was input into the model for transformer fault diagnosis. Results demonstrate that the proposed

diagnostic model achieves an accuracy of 91.6%. Compared with LSTM，HBA-LSTM，and PSO-LSTM diagnostic

models，the accuracy improves by 10.12%，5.95%，and 3.57%，respectively，validating that the IPSO-LSTM

diagnostic model provides superior diagnostic accuracy and holds practical significance in the field of transformer

fault diagnosis.

Key words：transformer fault diagnosis；feature selection；random forest（RF）；long short-term memory

（LSTM）network；particle swarm optimization（PSO）algorithm

随着我国电网容量的不断增长，接入电网的

发电设备和用电设备数量呈现持续增长趋势。

变压器作为电力系统中的重要设备，在输配电网

络中起着至关重要的作用。由于变压器成本高、
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维修难度大，其故障一旦发生将造成严重影响。

因此，及时准确地发现变压器的故障状态对于保

障电网的稳定运行具有重要意义[1-2]。
油浸式变压器的故障早期检测主要采用油

中溶解气体分析（dissolved gas analysis，DGA）技

术[3]。该技术涵盖了多种分析方法，如国际电工

委员会（international electrotechnical commission，
IEC）提出的比值法、改良三比值法以及Duval三
角法等[4-5]。然而这类传统的油中溶解气体分析

法存在编码不全和依赖专家经验等缺陷[6]，因此

将人工智能技术与DGA方法相结合已成为当今

研究的热点。文献[7]利用数据增强技术增加训

练数据量来提升长短期记忆网络（long short-term
memory，LSTM）模型的性能，结果证明准确率、查

准率、查全率及 F1值均有提高；另外与支持向量

机（support vector machine，SVM）模型相比有更好

的预测效果。然而，LSTM模型自身存在全局搜

索能力不足且容易陷入局部最优的问题，准确率

在很大程度上受到数据集质量的影响。文献[8]
借助少数类样本过采样（synthetic minority overs⁃
ampling technique，SMOTE）算法扩充样本，并利

用贝叶斯算法优化 LSTM网络，进而进行变压器

故障诊断，结果表明该方法模型使过拟合度降低

了 20%，准确率提升了 10%，但优化效果依赖于

概率模型的选择和先验知识的准确性。同时贝

叶斯优化需要构建和更新概率模型，使得面临训

练时间长且计算量大的问题。文献[9]利用随机

森林（random forest，RF）算法对小型固定翼无人

机故障数据进行特征选择，并构建基于RF-LSTM
的故障诊断模型，实验表明相较于 LSTM准确度

提高 5.6%，但算法结构单一，稳定性差。文献[10]
提出了一种粒子群优化（particle swarm optimiza⁃
tion，PSO）算法与长短期记忆网络相结合的水电

机组故障诊断方法，相较于标准的 LSTM和 PSO-

SVM的故障诊断方法，该模型虽然提高了全局搜

索能力和收敛速度，但其本身具有一定的复杂

性，在处理大规模数据集时，存在时间长、效率低

的问题。

综上所述，本文提出了一种基于特征优选与

改进粒子群优化（improved particle swarm optimi⁃
zation，IPSO）算法的优化长短期记忆网络的变压

器故障诊断模型。首先，对变压器故障数据进行

预处理，去除内部缺失值和明显异常值，并利用

SMOTE算法扩充其数据量，以及使用特征比值法

将样本特征扩展至 20维；其次，使用随机森林算

法按照特征重要程度进行排序，去除冗余特征，

降低数据的复杂程度，进而选择最优特征数；再

者，引入非线性自适应惯性权重改进 PSO算法，

利用改进后的 PSO算法来优化 LSTM最优超参

数；最后，输入特征优选后的数据进行变压器故

障诊断。结果表明，利用改进粒子群算法优化长

短期记忆网络（improved particle swarm optimiza⁃
tion-long short-term memory，IPSO-LSTM）的诊断

模型在对变压器故障诊断中具有较高的准确率，

且与粒子群算法和蜜獾算法（honey badger algo⁃
rithm，HBA）相比，效果更佳。

1 算法原理

1.1 SMOTE算法

由于变压器故障诊断数据集中故障样本数

量有限，致使模型泛化能力不足，较易造成过拟

合风险。为解决这一问题，本文采用SMOTE算法

来生成相似样本，从而扩充数据集并进行辅助训

练。SMOTE算法是通过在样本及其邻近同类样本

的连线上随机创建虚拟样本，以此来实现不同特

征样本比例的平衡与扩展[11]。其具体流程如下：

1）选择少数类样本：在少数类样本中选取样

本 xi 作为生成新样本的基准，以欧式距离为标

准，计算该样本与其余故障样本的欧氏距离。

2）近邻样本选择：根据样本不平衡比例设定

采样倍率N，对于每个基准样本 xi，从其 k个近邻

中随机选择N个样本 xij。
3）新样本合成：按照下式生成新样本：

Xnew = xi + r × ( xij - xi ) （1）
式中：xi为少数类中的第 i个样本；xij为样本 xi的
第 j个近邻样本，j=1，2，…，k；Xnew为在样本 xij和 xi
之间插值合成的新样本；r为[0，1]之间的随机数。

1.2 RF算法

RF是一种集成学习（ensemble learning）方

法，它通过集成多个决策树，可有效解决分类和

回归问题。在RF模型中，使用Bagging方法抽取

样本，其中约 2/3的样本被用于训练模型，而未被

用来训练的数据则被称为袋外数据（out-of-bag，
OOB）。利用OOB数据，RF模型能够评估各特征

对分类精度的影响。并且，通过使用该数据计算

出平均精度下降（mean decrease accuracy，MDA）
指标[12]，进而对特征重要程度进行排序。数学公

式如下：
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MDA(Xk ) = 1N∑j = 1
N

M Aj (Xk ) （2）
式中：N为决策树数量。

通常情况下MDA值越大，代表其重要程度越高。

1.3 LSTM算法

LSTM的记忆神经元由内部状态、输入节点、

输入门、遗忘门和输出门组成，用来控制信息流

动与更新[13]。基本结构图如图1所示。

图1 LSTM网络基本结构

Fig.1 Basic structure of the LSTM network
步骤一：遗忘门通过 Sigmoid函数对细胞状

态中的信息进行删减和保留，将有用的信息长期

记忆，公式如下：
ft = σ (W f ⋅ [ ht - 1,xt ] + b f ) （3）

式中：ft为 t时刻遗忘门输出；σ为 Sigmoid激活函

数；b f为偏置项。

步骤二：输入门分成 Sigmoid层和 tanh层两

部分，对将要写入细胞状态的信息进行预处理筛

选，并生成新的候选值向量，以更新细胞状态。

公式如下：
C't = tanh (Wc ⋅ [ ht - 1,xt ] + bc ) （4）

式中：C't为 t时刻的细胞状态。

步骤三：输出门负责从更新后的细胞状态中

提取信息作为当前时间步的输出。公式如下：
ot = σ (Wo ⋅ [ ht - 1,xt ] + bo ) （5）

ht = ot ⋅ tanh (Ct ) （6）
式中：Wo为权重矩阵；bo为偏置项；ht为 t+1时刻

隐藏层的输出信号。

1.4 改进粒子群优化算法

粒子群优化算法是受到鸟群迁徙行为的启

发而提出的一种群体智能算法。在粒子群算法

中每个粒子的位置表示模型的超参数，速度表示

控制超参数的更新幅度。粒子通过位置和速度

的更新公式调整运动状态。更新速度和位置的

公式如下：

vk + 1i = ωvki + c1r1 ( pbesti - xki ) + c2r2 (gbesti - xki )（7）
xk + 1i = xki + vk + 1i （8）

式中：pbesti为个体最优；gbesti为群体最优；ω为惯

性权重；c1为个体学习因子；c2为群体学习因子；

r1，r2为随机数。

传统粒子群算法处理高维数据时容易陷入

局部收敛，出现误差大、精度低等问题。为解决

上述问题，本文提出一种改进的动态自适应 PSO
算法。该算法对粒子群算法的惯性权重 ω值进

行改进，在迭代次数增加的过程中，通过非线性

变化的形式予以调整。惯性权重 ω是调整粒子

搜索行为的关键参数，优化初期较大的ω值有利

于全局探索，优化后期较小的 ω值有利于局部

搜索[14-15]。
引入离散度 k（n）结合 Sigmoid激活函数将惯

性权重设为以下表达式：

ω ( t )=ωmax +(ωmin -ωmax ) 1
1+ exp [ -10b ( 2t

k ( )n ⋅T - 1 ) ]
（9）

式中：ωmax，ωmin为最大、最小惯性权重；T为最大迭

代次数；b为阻尼因子，一般取[0，1]；k（n）为当前

代与上一代适应度标准差的比值。

1.5 IPSO-LSTM模型构建

LSTM模型的参数包含常规参数和超参数两

种类别。其中，常规参数由可训练的权重和偏置

项组成，并通过 TensorFlow内嵌的优化算法来实

现参数调整[16]。超参数是人工设置的参数，包括

隐藏层大小，学习率和 L2正则化参数，这些参数

决定了模型的容量和训练时间，并对模型的性能

有很大影响。为解决上述问题，本文采用 IPSO算

法对 LSTM超参数进行寻优，并将优化后的超参

数输入至 LSTM中，构建 IPSO-LSTM的故障诊断

模型。主要步骤如下：

1）设置 IPSO算法参数，算法关键参数配置如

下：粒子群规模设置为 20，迭代次数设为 50，加速

因子为 2，惯性权重采用动态调整策略，取值范围

设定为[0.4，0.9]，阻尼因子 b取0.5。
2）确定算法的适应度函数，本文适应度函数

设置为分类准确率。将预测结果与测试集的真

实标签进行比较，得出分类准确率。

3）计算每个粒子的适应度值，更新个体历史

最优解 pbesti和全局最优解 gbesti，并同步更新对

应的最优适应度值。
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4）进行寻优迭代，若达到最大迭代次数，结

束循环并输出最优超参数。

5）输入超参数，包括最优隐藏层单元数、最

优学习率、最优L2正则化参数。

6）设置 LSTM模型，模型结构包括输入层、

LSTM层、激活层、全连接层、softmax层和分类层，

训练选项设置为使用 adam优化器，并设置迭代

次数。

IPSO-LSTM变压器故障诊断模型流程图如

图2所示。

图2 IPSO-LSTM故障诊断流程图

Fig.2 IPSO flowchart of IPSO-LSTM fault diagnosis

2 变压器故障诊断具体实现过程

针对变压器故障诊断精度差、准确率低的问

题，提出了基于 RF特征优选的 IPSO-LSTM变压

器故障诊断方法如下：

1）样本扩充：删除原始故障数据集中的缺失

值，使用SMOTE算法根据式（1）合成新样本，实现

对数据集样本数量的扩充。

2）特征扩充：以 5种基本的变压器油中溶解

气体为基础，使用气体特征比值法将气体特征扩

展，并生成20维待选特征集合。

3）RF特征重要度排序：首先设置随机森林模

型参数并训练，然后依据模型输出的特征重要性

指标MDA值，对 20维变压器特征按从高到低的

顺序排列。

4）特征优选：将 1至 20维变压器特征数据集

输入到 LSTM算法中，运行 10次取平均诊断精

度，选择平均诊断精度最高的特征维数作为故障

诊断实验数据集。

5）IPSO优化搜索：初始化粒子群，设置 IPSO
迭代次数、种群数量以及优化参数的取值范围，

然后进行寻优迭代，寻找最优超参数。

6）输入 IPSO-LSTM模型：将 IPSO模型所得的

最优超参数输入至 LSTM模型中，然后使用训练

数据对 IPSO-LSTM模型进行多轮迭代优化。最

终，将测试集输入至 IPSO-LSTM模型，对变压器

故障类型进行识别。

流程图如图3所示。

图3 故障诊断方法流程图

Fig.3 Fault diagnosis flowchart

3 实验结果分析

3.1 故障类型和故障特征

研究数据来源于 500 kV油浸式变压器故障

记录，包含故障变压器绝缘油中溶解的各类气体

（H2，CH4，C2H4，C2H6，C2H2）；同时变压器的状态类

别可分为 6种，样本扩充表如表 1所示，20种气体

特征量如表2所示。
表1 样本扩充前后对照表

Tab.1 Comparison of samples before and after augmentation
状态类型

中低温过热

高温过热

正常

局部放电

低能放电

高能放电

对应编号

1
2
3
4
5
6

扩充前

113
92
140
83
45
77

扩充后

140
140
140
140
140
140

表 2中，编号 6至 20是基于数据比值法扩充

的特征。表中“总气”表示5种特征气体（H2，CH4，

C2H4，C2H6，C2H2）的总和，而“总烃”则表示 4种烃
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类气体（CH4，C2H4，C2H6，C2H2）的总和。

3.2 特征优选结果分析

为避免预测受到不重要特征的干扰，使用RF
算法对数据的 20个特征进行优选，运行 10次后

取平均值，将重要度由高到低进行排序，如图 4
所示。

图4 重要度由高到低进行排序图

Fig.4 Feature importance sorted from high to low
由图 4可知，各个特征的重要性存在差异，为

消除冗余特征，需要对特征进行优选。按照重要

性由高到低依次构建包含 1至 20个特征的数据

集，分别使用 LSTM算法、LSSVM算法、ELM算法

和 SVM算法进行预测。运行 10次取平均诊断精

度如图5所示。

图5 基础模型平均精度图

Fig.5 Average accuracy of basic models
由图 5可知，相比于 SVM，LSSVM和 ELM算

法，基于 LSTM算法的变压器故障诊断模型在平

均精度上表现最佳。LSTM算法平均诊断精度和

最高诊断精度如图6所示。

图6 LSTM模型平均精度图

Fig.6 Average accuracy of the LSTM model
由图 6可知，特征个数从 1到 13增加的过程

中，诊断精度逐步提高；当特征数增加到 13个时，

最高精度达到峰值为 86.9%。特征个数从 14增
加到 20的过程中，诊断精度逐渐趋于平稳，并且

略低于使用 13个特征时的准确率。分析上述实

验结果：在特征数量有限的情况下，模型训练不

充分，从而导致分类准确率偏低；而当特征数量

过多时，模型的复杂度会增加，引起过拟合现象，

进而使得分类准确率不增反降。基于图 6的实验

结果，选择排序后的前 13维特征作为模型训练和

诊断的数据集。

3.3 基于 IPSO-LSTM的变压器故障诊断结果

分析

将特征优选后的 13维数据集带入到 IPSO-

LSTM模型中进行故障诊断。诊断结果如图 7和
图8所示。

图7 故障诊断预测结果

Fig.7 Fault diagnosis prediction results
结合图 7和图 8可知，测试数据共 168组，IP⁃

SO-LSTM正确分类 154组，错误分类 14组，总体

故障诊断准确率为 91.66%。其中高温过热和低

能放电准确率为 100%，高能放电的错误分类最

多，准确率只有 78.6%。分析其原因在于，故障特

征存在区分度低且重叠的问题，低能放电与局部

表2 20种待选特征及其编号

Tab.2 20 Features to be selected with their numbers
编号

1
2
3
4
5
6
7
8
9
10

特征量

H2
CH4
C2H6
C2H4
C2H2
CH4/H2
C2H4/C2H6
C2H2/C2H4
C2H2/CH4
C2H2/C2H6

编号

11
12
13
14
15
16
17
18
19
20

特征量

H2/总烃

CH4/总烃

C2H2/总烃

C2H6/总烃

C2H4/总烃

H2/总气

CH4/总气

C2H2/总气

C2H6/总气

C2H4/总气
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放电会产生与高能放电相同的气体特征，导致难

以通过气体浓度准确区分高能放电故障。为了

进一步评估 IPSO-LSTM模型性能，对于故障诊断

结果引入了准确率（accuracy）、精确率（preci⁃
sion）、召回率（recall）、F1_score和 kappa系数进行

进一步的描述。根据表 3所示的各项指标结果，

可以得出该模型分类能力强，在故障诊断方面有

较高的准确性与可靠性。
表3 IPSO-LSTM算法性能指标

Tab.3 Performance metrics of the IPSO-LSTM algorithm
指标

实际值

精确率

0.926 5
准确率

0.916 7
召回率

0.924 4
F1_score
0.918 1

kappa系数

0.9
单次变压器故障诊断模型性能的评估具有

偶然性与随机性。为了进一步说明该诊断模型

的优点，本文使用 IPSO算法对不同方法处理的数

据集进行训练对比，并与不同的优化算法对比

分析。

3.4 不同处理方法对比分析

为验证基于随机森林特征优选方法的有效

性，本文采用原始 5维特征、20维全特征、RF特征

优选的 13 维特征、SMOTE 扩充后 5 维特征、

SMOTE扩充后 20维全特征和本文方法，这 6种特

征处理方式进行对比验证。诊断模型均选用 IP⁃
SO-LSTM诊断模型，实验参数设置与上节保持一

致，连续运行 10次后求得平均值。实验结果如表

4所示。

由实验结果得出，通过SMOTE数据扩充以及

增加特征维度并采用特征优选的数据处理方法，

可以有效提升变压器故障诊断模型的准确率。

表4 不同特征诊断准确率

Tab.4 Diagnostic accuracy for different features
标号

1
2
3
4
5
6

特征选取

原始5维特征

20维全特征

RF特征优选（13维）

SMOTE扩充后5维特征

SMOTE扩充后20维全特征

本文方法

准确率/%
77.27
82.72
85.45
83.92
86.01
90.11

3.5 不同优化算法的对比分析

为进一步验证 IPSO-LSTM故障诊断模型的

优秀性能，将经本文方法处理后的样本数据输入

到 LSTM，HBA-LSTM和 PSO-LSTM模型中进行训

练。为了确保实验中变量控制的一致性，实验参

数设置与 3.2节保持一致。分类结果如图 9~图 11
所示，对比结果如表5所示。

图9 LSTM分类结果

Fig.9 LSTM classification results

图10 HBA-LSTM分类结果

Fig.10 HBA-LSTM classification results
在 4种算法模型中，LSTM准确率最低，引入

优化算法后HBA-LSTM和PSO-LSTM模型的准确

率有所提升。这些模型中 IPSO-LSTM模型表现

图8 IPSO-LSTM故障诊断分类结果

Fig.8 Fault diagnosis classification results
based on IPSO-LSTM model
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最佳，相比于PSO-LSTM，HBA-LSTM，LSTM算法，

IPSO-LSTM模型诊断精度分别提高了 3.57%，

5.95%，10.12%。因此，IPSO-LSTM模型有较强的

分类能力。

3.6 不同数据集分析

单一数据集可能存在局限性，为进一步验证

模型的有效性，本文采用 110 kV油浸式变压器故

障数据集进一步分析验证模型有效性。

110 kV变压器数据集状态类型分为 5种，分

别为中低温过热、高温过热、低能放电、高能放电

和正常，原始数据集故障数据 453组，使用本文方

法，首先采用 SMOTE算法扩充至 585组，其次使

用比值法将特征维数扩展至 20维，再次利用RF
算法进行特征优选，优选后的特征维数为 12维，

最后输入至 IPSO-LSTM算法分析结果。诊断结

果如图12、图13所示。

结合图 12和图 13可知，测试数据 175组，正

确分类 156组，错误分类 19组，总体故障诊断准

确率为 89.1%。由此可见，该故障诊断模型具有

较强的泛化能力，适用于不同的变压器故障数

据集。

图12 IPSO-LSTM故障诊断结果

Fig.12 The IPSO-LSTM fault diagnosis results

图13 故障诊断分类结果

Fig.13 Fault diagnosis classification results

4 结论

本文提出一种基于特征优选的 IPSO-LSTM
变压器故障诊断方法，经过实验分析，得出结论

如下：

1）使用SMOTE算法扩充样本数量，通过特征

比值法扩充至20维特征，利用RF算法优选前13维
特征，去除了冗余特征。相较于原始数据集（5种
DGA气体），本文所提方法准确率提高了14.4%。

2）本文所提出的惯性权重优化方法有效平

衡了算法全局探索能力与局部开发能力。经过

IPSO优化后的LSTM模型故障诊断准确率可由寻

优前的 81.54%进一步提升至 91.66%，相比于未

改进的PSO-LSTM以及常用的HBA-LSTM准确率

提升了 3.57%和 5.95%，同时，模型在不同数据集

中的诊断精度达到 89.1%，表现出了较强的泛化

能力。

因此本文所提出的基于特征优选的 IPSO-

LSTM变压器故障诊断模型，分类精度高，实用性

强，具有一定的理论意义与实际价值。

图11 PSO-LSTM分类结果

Fig.11 PSO-LSTM classification results
表5 不同算法诊断准确率

Tab.5 Diagnostic accuracy of different algorithms
状态类型

中低温过热

高温过热

正常

局部放电

低能放电

高能放电

综合精度

故障诊断准确率/%
LSTM
75
92.85
85.71
89.28
75
71.42
81.54

HBA-LSTM
75
96.42
85.71
92.85
96.42
67.85
85.71

PSO-LSTM
85.71
92.85
96.42
96.42
82.14
75
88.09

IPSO-LSTM
85.71
100
89.28
96.42
100
78.57
91.66
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