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注意力机制驱动的多源数据融合配网估计

邱桂华，汤志锐，陈宇婷

（南方电网广东佛山供电局，广东 佛山 528000）

摘要：针对配网中数据异构性与多源性挑战，提出一种基于编码-解码注意力机制自监督多源量测数据融

合方法。该方法通过自监督学习自动捕捉数据间相关性，并利用编码和解码注意力机制提取加权融合特征，

增强数据关联性、完整性与可用性，此方法能够自适应不同类型输入数据，进而确保在多源数据场景下实现高

精度配网状态估计。在 57节点仿真系统上开展的实验结果表明，所提方法在准确率、AUC和Macro_F值等核

心指标上均优于 GraphMDN，RetNode，AdaAtt和 DR-GCN等主流算法。其中，准确率达到 88%，AUC提升至

76.05%，Macro_F值达到 93.02%，整体性能显著提升。相较最优对比算法，平均误差降低 47%，最大误差控制

在0.017以内。结果验证了所提方法在多源融合、电网数据建模与状态估计中的有效性与泛化能力。
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Distribution Network Estimation Driven By Attention Mechanism for Multi-source Data Fusion

QIU Guihua，TANG Zhirui，CHEN Yuting

（Guangdong Foshan Electric Power Bureau of China Southern Power Gird，Foshan 528000，Guangdong ，China）

Abstract：Aiming at the challenges of data heterogeneity and multi-source in distribution networks，a self-

supervised multi-source measurement data fusion method based on coding-decoding attention mechanism was

proposed. This method automatically captured the correlation between data through self-supervised learning，and

extracted weighted fusion features by encoding and decoding attention mechanisms to enhance the relevance，

integrity and availability of data. This method can adapt to different types of input data，thus ensuring the

realization of high-precision distribution network state estimation in multi-source data scenarios. Experimental

results on a 57-node simulation system show that the proposed method outperforms mainstream algorithms such as

GraphMDN，RetNode，AdaAtt and DR-GCN in terms of accuracy，AUC and Macro_F value. Among them，the

accuracy reached 88%，the AUC increased to 76.05%，the Macro_F value reached 93.02%，and the overall

performance was significantly improved. Compared with the optimal comparison algorithm，the average error is

reduced by 47%，and the maximum error is controlled within 0.017. The results verify the effectiveness and

generalization ability of the proposed method in multi-source fusion，power grid data modeling and state estimation.

Key words：multi-source data fusion；encoding-decoding attention；self-supervised learning；distribution

network state estimation

配网状态估计作为能源管理系统的关键之

一，广泛应用于监测电网的运行状况，辅助识别

设备状态、负荷和发电机的功率信息[1-2]。传统状

态估计方法主要包括最小二乘法、加权最小二乘

法[3]、扩展卡尔曼滤波（extended Kalman filter，
EKF）[4]和无迹卡尔曼滤波（unscented Kalman
filter，UKF）[5]等。这些方法在一定程度上提升了

配网状态估计的稳定性，但其模型结构通常依赖

于线性或准线性假设，难以充分建模配网中非线

性、多模态和高维耦合特征，尤其在面对实际工

况中的数据异构与数据稀疏问题时表现受限。

目前，配电网状态估计所依赖的数据主要来

源于 SCADA和WAMS系统，但二者在采样频率、

数据精度和信息维度上存在显著差异。SCADA
系统虽然覆盖面广，但数据时效性和测量精度较

低；WAMS系统具备高频采样能力，但安装成本
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高，布点稀疏，难以全面感知配电网状态[6]。因

此，如何在保持系统整体可观测性的基础上，实

现对 SCADA与WAMS多源异构量测数据的高效

融合，成为当前研究关注的重点方向之一。

多源量测数据融合是指将来自不同来源、格

式、维度的数据统一整合，以构建更完整和一致

的特征表示[7]。然而，受限于数据异构性、采样频

率不一致、冗余结构和语义偏差等问题，传统融

合方法（如拼接、加权、统计规则）在实际应用中

面临鲁棒性差、信息损失大、模型过拟合等挑

战[8]。近年来，随着深度学习的发展，研究者尝试

引入图神经网络（GCN）[9]、自监督学习[10]和注意力

机制[11]来构建更加灵活、泛化能力更强的融合框

架，用以建模多源数据间复杂的时空依赖关系，

提升状态估计的准确性与鲁棒性。

其中，编码-解码注意力机制（encoder-decod⁃
er attention）作为一种在自然语言处理任务中广

泛应用的架构，具备强大的序列建模与特征融合

能力。通过编码器提取全局特征，解码器结合注

意力权重聚焦输入的关键部分，有效提升了对长

距离依赖与异构特征的表示能力[12-13]。在配电网

多源数据处理场景中，具备天然优势，尤其适合

建模WAMS与SCADA系统间的动态关联特征。

基于此，本文提出一种基于编码-解码注意

力机制的自监督多源数据融合配网状态估计方

法。通过编码-解码结构构建时空上下文依赖关

系，并引入自监督策略以增强在弱标注数据场景

下的鲁棒性与泛化能力。实验验证表明，本文方

法在多个评估指标下均优于现有主流算法，能够

显著提升配电网运行状态估计精度与稳定性。

1 加权最小二乘状态估计模型

考虑多源量测数据的加权最小二乘法状态

估计目标函数 J（x）可表达为[14]

min J ( x ) = J P ( x ) + J SA ( x ) （1）
其中

ì

í

î

ïï
ïï

J P ( x ) = [ zP - hP ( x ) ]T (RP )-1 [ zP - hP ( x ) ]
J SA ( x ) = [ zSA - hSA ( x ) ]T (RSA )-1 [ zSA - hSA ( x ) ]
s.t. c ( x ) = 0

式中：x为状态变量；JP（x），JSA（x）分别为D-PMU、
传统量测目标函数；zP，zSA为量测值；hP（x），hSA（x）
为量测函数；RP，RSA为误差协方差矩阵；c（x）为零

注入约束。

构建的增广量测模型可表示为

G = é
ë
ê

ù
û
ú

H TR-1H CT

C 0
（2）

其中 H = [ (H P )T (H SA )T ] T
R = diag (RP,RSA )

式中：H为雅克比矩阵；R为误差协方差矩阵；C为

零注入约束雅克比矩阵。

引入拉格朗日函数，式（1）所述的状态估计

模型转化为

L (x,λ ) = 12 J (x ) - λTc (x ) （3）
式中：λλ为拉格朗日乘子。

采用高斯-牛顿法形成如下迭代方程：
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H TR-1Δzr-c (x r ) （4）
其中 Δzr=z−h（xr）
式中：r为迭代次数；x r，Δx r分别为第 r次迭代状态

变量和变化量；z为量测值。

2 多源数据融合算法

2.1 算法模型结构

所提算法设计了一种基于编码和解码注意

力机制的自监督多源量测数据融合方法，用于配

网状态估计。该模型包括多个输入层、一个编码

层、一个解码注意力层和一个自监督层[15]。其中，

编码和解码注意力层是模型的核心，能够有效地

挖掘多源异构数据中的显著信息，算法模型结构

流程如图 1所示。该模型的输入数据类型包括

WAMS与SCADA系统量测数据。

2.2 多源异构数据融合

本文设计的多源异构特征融合网络如图 2所
示。结构上，采用多分支分层融合策略。技术

上，采用基于门控机制的特征融合方法。

为实现多源异构信息的联合建模，本文引入

门控机制进行特征融合，其计算过程如下：

G F
j ,G R

j ,G T
j = δ [ Mθj (F t

j ,Rt
j ,T t

j ) ] （5）
F t
j + 1 = G F

j ⊗ F t
j + G R

j ⊗ Rt
j + G T

j ⊗ T t
j （6）

式中：G R
j ，G T

j 为门控权重；G F
j 为多源融合特征门控

权重；δ为门控激活函数；⊗表示乘积；Mθj为门控

生成网络。

2.3 编码与解码注意力

通过多源异构融合网络提取的空间特征，利

用Transformer编解码器[16]进一步学习数据间的时

空依赖关系。注意力机制通过计算查询与键的
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相似度以分配注意力权重，并对值向量进行加权

求和以生成输出，具体计算如下：

Attention (Q,K,V ) = softmax ( QK T

d
)V （7）

当 Q，K 和V相等时，称之为自注意力机制。

为捕获多维特征关联，采用多头注意力机

制，其计算如下：
MuliHeadAttention (Q,K,V ) = Concat (h1,h2,…,hk )W O

（8）
其中

hi = Attention (QW Q
i ,KW K

i ,VW V
i ) （9）

式中：W Q
i ，W K

i ，W V
i 分别为查询、键和值线性转换

的参数矩阵；W O为多头注意力机制最终线性转

换的参数矩阵[17]。

图 3展示了本文设计的轴向注意力机制，通

过并行执行时空轴向注意力以提升训练与推理

速度。从计算角度看，注意力操作在三个维度上

独立执行，显著降低了时空特征图中每个位置的

计算复杂度至O（T × H × W）。同时，经过注意力

操作后的输出仍然保留全局感知能力，轴向注意

力的输出 zi,j,t计算公式如下[17]：

z1i,j,t = softmax ( q i,j,tK
T1

d
)V1 （10）

z2i,j,t = softmax ( q i,j,tK
T2

d
)V2 （11）

z3i,j,t = softmax ( q i,j,tK
T3

d
)V3 （12）

zi,j,t = z1i,j,t + z2i,j,t + z3i,j,t （13）
式中：qi，j，t为查询向量；K1，V1∈RH×d为垂直方向键

值矩阵；K2，V2∈RW×d为水平方向键值矩阵；K3，V3∈
RT×d为时间方向键值矩阵。

图3 注意机制结构

Fig.3 Attention mechanism structure
编码器由多个相同的层堆叠而成，如图 4所

示。结构上，卷积前馈网络由两层卷积函数和

Leaky ReLU激活函数组成。为了高效连接这些

残差模块，所有子层的输出维度设置 d。其中，图

4中的空间-时间轴向注意力基于图 3中的注意

力机制。具体公式如下：

图1 模型结构流程图

Fig.1 Model structure flowchart

图2 多模态特征融合网络结构示意图

Fig.2 Schematic diagram of the multi-modal
feature fusion network structure
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ŷ = softmax [Wpmean ( zi,j,t ) + bp ] （14）

图4 编码器和解码器架构

Fig.4 Encoder and decoder architecture
2.4 自监督优化

损失函数包含三个部分：分类 LCE、语义约束

LSCL和自监督对比LSSL，如下式所示：

L = λ1LCE + λ2LSCL + λ3LSSL （15）
式中：λ1，λ2和λ3为平衡参数，用于控制不同损失

的影响。

在本文中，使用交叉熵损失函数来计算分类损

失，如下式所示：

LCE = -∑
i = 1

L∑
j = 1

m

ylnŷ （16）
式中：y，ŷ分别为真实概率和预测概率。

在进行多源异构数据融合时，需确保语义一

致性，即多源异构数据融合不会导致预测标签发

生较大变化。为此，设计了语义约束损失来衡量

不同源数据与融合数据之间的语义接近程度：

LSCL = 1V∑i = 1
L

W ( ŷ,y ) （17）
多源异构数据经过特征融合模块和编码解

码模块后得到多元数据。第 i个时刻的嵌入表示

用 z表示，即第 i个时刻嵌入矩阵中对应的行Z ( i )
u 。

在本文中，将同一来源在不同时刻的表示视为正

样本对，不同来源在不同时刻的表示视为负样本

对。通过最大化正样本对的相似度并最小化负样

本对的相似度，得到自监督对比损失公式如下：

LSSL = 1
N·V∑u ∈ V∑i,j

V

L (Z ( i )
u ,Z ( j )

u ) （18）

3 示例与仿真分析

3.1 实验设置

本文参照文献 [6]，利用 matpower仿真生成

SCADA和WAMS系统样本数据库，数据库详情如

表 1所示，SCADA数据种类包括：线路功率、节点

注入功率、节点电压幅值及线路电流幅值。WAMS
数据种类包括：节点电压相量、线路电流相量、节

点注入电流相量。其中 PMU安装节点分布如图

5所示[6]。算法参数如表2所示[15]。

图5 57节点系统

Fig.5 57-node system
表1 数据库详情

Tab.1 Database details
参数名称

样本数据

数据种类

训练集样本

验证集样本

测试集样本

SCADA
1 000
4
700
200
100

WAMS
1 000
3
700
200
100

表2 算法参数设置

Tab.2 Algorithm parameter settings
参数名称

嵌入维度

隐藏层维度

学习速率

迭代次数

数值

1 024
512
0.001
100

参数名称

批量大小

优化功能

注意网络层数

—

数值

64
Adam
2
—

3.2 算法性能对比

3.2.1 评价指标构建

为测试本文所提算法性能，与 GraphMDN，
RetNode，AdaAtt和 DR-GCN 四种自监督算法进

行对比分析。并构建以下三个评估指标：准确率

70



邱桂华，等：注意力机制驱动的多源数据融合配网估计 电气传动 2026年 第56卷 第1期

（Accuracy）、曲线下面积（AUC）和宏平均 F值

（Macro_F）。准确率衡量模型正确分类的样本数

占总样本数的比例，定义如下：

Accuracy = ∑
i = 1

N

TPi

∑
i = 1

N (TPi + TNi + FPi + FNi )
（19）

式中：TPi，TNi，FPi和 FNi分别为类别 i的真正例

数、真反例数、假正例数和假反例数；N为测试样

本的总数。

AUC是ROC曲线（受试者工作特征曲线）下

的面积，用于评估模型区分正负样本的能力。计

算如下：

AUC = ∫01TPR (FPR )dFPR （20）
TPR = TP

FN + TP （21）
FPR = FP

TN + FP （22）
对于多分类问题，AUC需要对每个类别计算

AUC值，然后取无权平均（Macro_AUC）：

Macro_AUC = 1
K∑i = 1

K

AUCi （23）
式中：K为类别总数；AUCi为第 i类的AUC值。

宏平均 F值是精确率（Precision）和召回率（Re⁃
call）的调和平均：

F = 2 × Precision + Recall
Precision × Recall （24）

其中 Precision = TP
FP + TP （25）

Recall = TP
FN + TP （26）

对于多分类问题，宏平均F计算方法如下：

Macro_F = 1
K∑i = 1

K

F1 i （27）
式中：F1i为针对类别 i计算的F1值。

3.2.2 算法收敛性能分析

为进一步说明本文所提方法的优越性，在本

次实验中，使用训练步数（或迭代次数）作为横坐

标，使用不同算法的收敛值（准确率）作为纵坐

标，进行对比分析。不同模型训练收敛过程对比

分析结果如图6所示。

从图 6可以看出，所提方法在 80轮左右收

敛，并达到最高值 88，整体最优。GraphMDN收敛

最慢，最终效果最差（83），适用性较低。RetNode
和 AdaAtt收敛速度适中，最终值略低于本文方

法，仍然是较优方法。DR-GCN表现稳定，收敛值

接近85，但仍然不及本文方法。

3.2.3 算法参数影响分析

为了探究方程自监督优化参数λ1，λ2和λ3对
分类结果的影响，其结果如图 7所示。在实验中，

固定两个平衡参数为最优设置，而另一个平衡参

数在 0至 1的范围内，以 0.2为步长取不同值，并

验证其性能。

图7 不同参数影响效果

Fig.7 Effect of different parameters
由图 7可知，λ1对性能的影响最为显著，其次

是 λ2。当 λ1从 0开始增大时，性能会有所提升。

当 λ1达到 0.8时，性能达到最优，随后则呈下降趋

势。λ2整体变化不大，在 74左右波动，在参数 0.4
时表现最佳。λ3从 0到 0.6逐渐增加，在 0.6处达

到峰值（75），随后开始下降，但下降幅度较小，说

明其对参数变化的稳定性较好。

3.2.4 算法数据处理能力分析

不同算法对 SCADA和WAMS系统样本数据

分析结果分别如图 8所示，其中图 8a为 SCADA数

据处理分析结果，图 8b为WAMS数据处理分析

结果。

从图 8可以看出，本文方法在 Accuracy、AUC
和Macro_F三项指标上均优于其他算法，整体表

现最优，充分体现了模型的特征提取与泛化

能力。

在图 8a高密度 SCADA数据 中，本文方法的

图6 模型训练收敛过程

Fig.6 Model training convergence process

71



邱桂华，等：注意力机制驱动的多源数据融合配网估计电气传动 2026年 第56卷 第1期

Accuracy约为 78%，较 AdaAtt（68%）提升约 10个
百分点，较 GraphMDN（59%）提升约 19 个百分

点；AUC稳定在 96%左右，Macro_F约 78%，验证

了模型在稠密数据场景下的高精度与稳定性。

在图 8b稀疏异构 WAMS 数据 中，本文方法

的 Accuracy约 70%，较 AdaAtt（67%）提升约 3个

百分点；AUC达 88%，Macro_F 为 73%，均为最高

值，表明模型在弱特征与样本不均条件下仍保持

稳健表现。

总体来看，本文方法在不同类型数据中均展

现出显著的鲁棒性与适应性。这主要得益于模

型中引入的自监督机制与注意力结构，能够深度

挖掘多源数据的内在关联并自动补足监督信息

空缺，尤其在小样本与少数类表示学习场景中表

现出明显优势。

3.3 不同融合策略的评估

为进一步说明多源数据融合网络的有效性，

对比分析了四种融合策略：

策略 1：在输入层将异构特征拼接，并利用相

同的卷积网络进行特征提取，该方法通常应用于

深度模型中融合多源数据。

策略 2：输出拼接，每个多源数据特征由独立

网络分支提取，最终通过 1×1卷积融合各数据源

的特征。

策略 3：卷积与分层融合——采用分层特征

融合策略，并使用 1×1卷积替代门控机制进行特

征融合。

策略 4：门控与分层融合（本文方法）——结

合门控机制与分层融合策略，以调控不同数据源

对整体特征的贡献。不同特征融合策略结果如

表3所示。
表3 不同策略比较

Tab.3 Different strategy comparisons
样本数据

SCADA

WAMS

策略

策略1
策略2
策略3
策略4
策略1
策略2
策略3
策略4

Accuracy/%
70.85
73.10
75.05
77.90
60.55
62.57
66.93
68.81

AUC/%
68.92
71.25
73.80
76.05
53.24
54.11
57.92
59.85

Macro_F/%
90.12
91.75
93.02
93.02
81.54
83.80
86.21
87.95

实验结果分析如下：

1）SCADA 数据分析。从表 3 中可见，在

SCADA数据场景下：策略1（输入拼接）在Accuracy，
AUC 和 Macro_F 上 分 别 为 70.85%，68.92% 和

90.12%，性能最低。策略 2（输出拼接）相比策略

1，在 Accuracy上提升了 2.25个百分点，AUC提升

2.33个百分点，Macro_F提升 1.63个百分点。策

略 3（卷积与分层融合）进一步提高，Accuracy达到

75.05%，较策略 1提升 4.2个百分点。本文提出的

策略 4（门控与分层融合）在 Accuracy 上达到

77.90%，较策略 3提升 2.85个百分点，在 AUC上

提升 2.25个百分点，在Macro_F上与策略 3持平

（均为93.02%），为所有策略中的最优结果。

2）WAMS数据分析。在WAMS数据场景下，

策略性能差距更为明显：策略 1各项指标均为最

低，Accuracy仅为60.55%，AUC为53.24%，Macro_F
为 81.54%。策略 2相比策略 1，在Accuracy上提升

2.02个百分点，Macro_F提升 2.26个百分点。策

略 3显著优于策略 1和 2，其中 Accuracy提升至

66.93%，较策略 1提升 6.38个百分点，AUC提升

4.68 个百分点。本文所提策略 Accuracy 达到

68.81%，较策略 3提升 1.88个百分点，AUC提升

1.93个百分点，Macro_F达到87.95%，为全场最佳。

从整体上看，本文提出的门控与分层融合策

略（策略 4）在两种数据场景下均取得最高指标

值，证明其在多源数据的特征提取和融合方面具

备更优的效果。相比传统拼接类策略，所提方法

的平均准确率提升约 7%，AUC平均提升超 6%，

图8 不同算法数据处理效果

Fig.8 Data processing effects of different algorithms
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且Macro_F始终处于领先位置，体现出其在提高

分类判别力、保持语义一致性方面的有效性。

3.4 状态评估效果分析

上述算例分析，有效验证了本文所提方法在

数据融合方面的优越性。在本节中，为验证本文

所提方法在配网运行状态估计中的有效性，通过

与最小加权二乘法（WLS）、全连接神经网络

（DNN）和图神经（GCN）[6]三种算法进行对比，结

果如图9所示。

图9 不同算法状态评估效果

Fig.9 State evaluation effects of different algorithms
图 9中展示了本文方法与三种主流算法

（WLS，DNN，GCN）在 57个节点上的节点电压幅

值相对误差分布情况。从整体趋势来看，本文方

法在各节点上的误差始终维持在 0.012以下，曲

线最为平稳，体现出优异的估计精度与鲁棒性。

相比之下，DNN误差波动最明显，峰值接近 0.05，
在多源异构特征融合下易出现过拟合；WLS误差

整体位于 0.015～0.03区间，虽较稳定但受线性假

设限制，难以刻画复杂关联；GCN表现相对平稳，

但部分节点误差仍超过 0.015，总体精度不及本

文方法。

从表 4中可以看出，本文方法在平均误差和

最大误差两项指标上均明显优于其他方法。与

DNN相比，平均误差降低了约73.5%，最大误差降

低了超过 80%；即使与性能相对较好的GCN算法

相比，本文方法的平均误差也低了近 47%，最大

误差降低了47%左右。
表4 不同算法误差数据提取均值与最大值

Tab.4 Extract mean and maximum values from
error data of different algorithms

方法

本文方法

GCN
WLS
DNN

平均误差

0.009
0.017
0.021
0.034

最大误差

0.017
0.032
0.045
0.088

本文方法的优越性在于结合了编码-解码注

意力机制与自监督学习框架。注意力机制可根

据数据相关性动态调整 SCADA与WAMS等多源

数据的权重，有效过滤冗余信息；编码-解码结构

强化了对时空依赖的建模，自监督学习则通过数

据自身生成训练信号，无需大量标注，提升了泛

化性与稳定性。综合应用上述机制，显著降低了

估计误差，增强了配网状态估计的鲁棒性。

4 结论

本文提出一种面向配电网状态估计的自监

督多源数据融合方法，针对多源异构数据融合难

题，融合了编码-解码注意力机制与自监督学习。

主要结论如下：

方法设计方面：引入编码-解码注意力机制，

有效提升多源数据加权融合能力。结合自监督

学习，降低对标注数据的依赖，增强模型的泛化

能力。

收敛性与鲁棒性验证：所提方法在 80轮内快

速收敛，准确率达到 88%，优于对比算法。在不

同数据扰动下保持稳定性能，体现出了良好的鲁

棒性。

数据处理能力分析：在 SCADA和WAMS数
据处理中，准确率分别提升 4%和 25%以上。

AUC和Macro_F值全面领先，适应稀疏与冗余数

据场景。

融合策略评估结果：策略 4（门控与分层融

合）在 Accuracy，AUC，Macro_F上表现最优。相比

传统拼接策略，平均提升准确率约 7%，AUC提升

超6%。

状态估计误差分析：在 57节点系统中，平均

误差降至 0.009，最大误差控制在 0.017。相比

DNN，误差降低超 73%；相较 GCN，误差降低近

47%。

综上，本文方法在配网多源异构数据环境下

具备优良的估计精度与稳定性，适合推广应用于

实际配网运行状态评估任务中。
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