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基于分层深度强化学习的电动汽车实时充电

引导策略
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摘要：为了实现电动汽车的实时充电引导以及提高充电站的充电效率，提出了一种基于分层深度强化学

习的电动汽车实时充电引导策略。考虑车-站-路多元主体的相互耦合特性，基于电动汽车与充电站、配电网

和交通路网的特征信息构建双层电动汽车充电导航模型。将上述模型解耦成双层有限马尔可夫决策过程网

络架构，上层网络评估和推荐充电站，并将最优选择结果传递给下层网络，下层网络为用户规划行驶路径。采

用基于彩虹框架的深度Q网络算法求解上述双层决策过程。最后在某特定城市区域进行仿真验证，结果表

明，与无序引导方法相比，所提方法可以减少用户时间成本和节省用户费用，且能够保证配电网安全运行。
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Abstract：To realize the real-time charging guidance of electric vehicles and improve the charging efficiency of

charging stations，a real-time charging guidance strategy for electric vehicles based on hierarchical deep

reinforcement learning was proposed. Considering the mutual coupling characteristics of vehicle-station-road

multiple agents，a double-layer electric vehicle charging navigation model was constructed based on the

characteristic information of electric vehicles，charging stations，distribution networks and transportation networks.

The above-mentioned model was decoupled into a two-layer finite Markov decision process network architecture，

the upper network evaluated and recommended charging stations，and the optimal selection result were passed to the

lower network. The lower network planed the driving path for the user. The deep Q-network algorithm based on

rainbow framework was used to solve the above-mentioned two-layer decision-making process. Finally，the

simulation results in a specific urban area show that compared with the disorderly guidance method，the proposed

method can reduce the user time cost and save the user cost，and ensure the safe operation of the distribution network.

Key words：electric vehicle（EV）；real-time charging guidance；recommending charging station；planning

driving path；two-layer deep reinforcement learning（DRL）；deep Q-network algorithm

电动汽车（electric vehicle，EV）作为“碳达峰、

碳中和”能源转型路径的重要组成部分，得到了

各级政府的积极推广，截至 2023年底，我国新能

源汽车保有量达 2 041万辆，车桩比为 2.4∶1[1]。
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然而，充电基础设施建设步伐远落后于电动汽车

爆发速度，造成了用户充电效率低下、充电便利

性不足等问题，严重影响了用户的驾乘体验以及

车辆的进一步普及 [2]。为此，合理高效的电动

汽车充电引导是实现能源交通友好融合的必要

前提。

目前为止，诸多研究已经深入开展了电动汽

车智能充电引导，旨在为用户的日常行驶和能源

补给提供便捷的决策辅助。针对电动汽车用户

出行成本影响分析，文献[3-5]根据时间与费用消

耗制定最优行驶与充电引导方案。文献[3]统筹

考虑交通-电气耦合信息以及实时电价策略，提

出基于动态电价激励的 EV充电引导方案，降低

用户出行的时间与充电成本。进一步，文献[4]通
过为快充需求用户规划经济行驶路径与推荐最

优充电站，实现用户成本降低的同时提高快充站

的运营效率。文献[5]分析了交通流延迟性对电

动汽车用户出行成本的影响，通过构建 EV充电

决策模型实现配电-交通耦合系统协同经济

运行。

文献[6-7]从增强EV充电网络智能化管理水

平，综合分析“车路网耦合”环境下的能耗、成本

和通行效率，为车主提供高效的充电策略。文献

[6]分析了“车-站-路-网”耦合条件下影响EV能

耗的相关因素，将充电导航问题形式化为两阶段

随机优化问题，为 EV车主提供便捷的充电导航

方案。文献[7]考虑了实时交通信息对用户决策

的影响，建立了基于“车-站-网”耦合的充电引导

模型，优化用户出行成本、充电站聚集充电负荷

以及路网通行效率。

此外，文献[8-10]考虑充电运营商服务水平，

通过改善充电便捷性与经济性，提升用户的充电

体验。基于实时路网状态特征信息，文献[8-9]在
确保满足用户充电需求和充电站利用率的条件

下，提出多决策方案结合的充电导航策略。进一

步，文献[10]提出电动汽车分布式引导框架，该框

架协调 EV用户、快速充电站、EV分配中心和配

电网运营商等多方面主体，优化电动汽车车主费

用以及快速充电站的充电效率。

上述研究为深入理解电动汽车充电导航的

决策机制奠定了研究基础，然而传统的数学建模

和启发式算法在面对大规模交通-电气网络时，

往往面临计算效率低下和实时性不足等问题。

近年来，机器学习得到快速发展，尤其是深

度强化学习（deep reinforcement learning，DRL），

验证了其在处理 EV充电引导问题上的可行性。

为此，文献[11-14]聚焦如何提高充电用户引导过

程中的在线应用效果。文献[11]通过确定最短充

电路线模型来获取车网的关键特征，并将其构建

为有限马尔可夫决策过程（finite Markov decision
process，FMDP）来进行最优充电导航策略的实时

学习。在文献[12]中，引入行为经济学的助推理

论来优化 EV车主的充电计划，通过孪生延迟深

度确定性策略梯度算法对单辆EV进行实时充电

引导。文献[13]基于多层网络理论的快速充电导

航策略，利用耦合网络加权定价方法解决电动汽

车快速充电导航问题。文献[14]提出换电站实时

调度策略，基于蒙特卡罗策略梯度强化学习方法

实现换电站实时调度，优化了换电站的充放电策

略和响应电池数量。

进一步，为了优化充电引导的多主体间的协

作效率，文献[15-17]基于深度强化学习算法设计

了考虑充电需求竞争的在线充电引导方案。文

献[15]提出了在线电动汽车充电引导算法，采用

集中训练和去中心化执行的 Actor-critic算法框

架，实现了大规模电动汽车的高效充电导航。而

文献[16]通过构建双时间尺度耦合框架，设计高

效的电动汽车在途充电引导策略，优化主体间的

协作效率，确保充电网络的高效运行。文献[17]
基于深度强化学习方法，解决配电系统中电力与

交通系统动态交互的贯序协同优化问题，显著提

升多主体在充电引导过程中的协作效率。

尽管上述基于DRL方法为电动汽车充电引

导提供了多种建模思路和先进的实时求解算法，

然而面对用户行为多样性和车网环境多变性时，

需要满足环境安全运行前提下兼顾用户经济性

引导。

综上，考虑到这一领域电动汽车智能充电引

导策略，仍然存在两个不足：

第一，DRL算法在优化目标与安全约束之间

的平衡问题[18]。目前传统人工智能方法在训练和

决策过程中往往忽视了安全约束条件带来的影

响，导致决策结果与实际安全运行要求存在偏

差，难以在复杂的电网环境中精准地平衡控制目

标与安全限制。

第二，现有DRL算法在提供端到端解决方案

方面的不足[19]。许多DRL算法专注于单一任务，

例如路径规划或站点选择，而缺乏一个能够同时
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处理路径规划和站点选择的综合性解决方案。

在复杂的动态环境中，单一任务的优化往往无法

满足系统整体性能的最优化需求。

综上，本文提出基于分层深度强化学习（hi⁃
erarchical deep reinforcement learning，HDRL）的电

动汽车充电引导策略，上层网络评估和选择最优

充电站，下层网络优化给定充电站的最优充电行

驶路径，并基于彩虹算法架构进行求解，最后通

过实际城市网络拓扑进行仿真验证。

1 引导结构

基于HDRL的电动汽车充电引导整体框架如

图 1所示，本文构建的电动汽车充电引导策略是

基于分层强化学习的双层决策架构。该架构主

要由上、下两层构成，当电动汽车发出充电请求

时，上层网络通过深度强化学习算法进行充电站

的决策，以确定最佳的充电站点，上层智能体依

据环境提供的状态信息和反馈奖励，优化动作选

择策略。一旦确定了最优充电站，相关信息被传

递至下层网络，由下层智能体负责制定充电行驶

路径，下层采用与上层相同的深度强化学习算

法。所提引导策略遵循顺序调度模型，智能体依

次为每辆电动汽车生成充电与路径决策，直至所

有车辆调度工作完成。

图1 基于HDRL的电动汽车充电引导整体框架

Fig.1 Overall framework of EV charging guidance based on HDRL

2 问题建模

2.1 数学建模

本文从降低EV用户综合成本出发建立多优

化目标，综合成本 f包括用户费用成本 f1以及时

间成本 f2两方面，具体计算公式如下：
f = min

φi,mn,φi,k f1 + minφi,mn,φi,k f2 （1）
其中

min
φi,mn,φi,k f1 = Ceni + Cchi + Chui （2）

min
φi,mn,φi,k f2 = ϖ (T tr

i + T wt
i + T ch

i ) （3）
Ceni = π̄CS μ∑

βmn ∈ Ωi

dmnφi,mn （4）
Cchi =∑

t = tstai

tendi

πCS
k,t PchΔt φi,k （5）

T tr
i = ∑

βmn ∈ Ωi

dmn
v̄mn

φi,mn （6）
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T ch
i = Qi ( )eexpi - earri

Pchηch
φi,k （7）

式中：Ceni ，Cchi 分别为路程耗电费用以及用户充电

费用；T tr
i ，T wt

i ，T ch
i 分别为第 i个用户的驾驶时长、

充电等待时长以及充电时长，i ∈ Ω EV，Ω EV为电动

汽车数量集合；φi,mn为路径选择变量，φi,mn = 1表
示第 i个用户选择交通节点 βm和 βn之间的道路的
βmn，否则 φi,mn = 0；βm, βn ∈ Ω E，Ω E为交通路网 GTN

路段集合；Ωi为第 i个用户的路径选择集合；φi,k为
充电站选择变量，φi,k = 1表示第 i个用户被推荐

至第 k座充电站，否则φi,k = 0；k ∈ Ω CS，Ω CS为充电

站的集合；ϖ为时间成本系数；π̄CS为充电站平均

充电价格；μ为 EV单位能耗；dmn为交通路网 GTN

的道路 βmn的长度；πCS
k,t 为充电站 k的 t时刻的实时

电价，t ∈ T，T为控制时间；Pch为充电功率；tstai ，tendi
分别为第 i个用户的充电开始时间与充电结束时

间；v̄mn为交通路网 GTN的道路 βmn平均通行速度；
Qi为第 i个用户的电池容量；earri ，eexpi 分别为第 i个
用户到达时刻荷电状态（state of charge，SOC）以

及期望结束的SOC；ηch为充电设备效率。

1）电动汽车约束如下：

e reqi -
μ∑
βmn ∈ Ωi

dmn

Qbat
i

φi,mn > efl （8）

∑
k ∈ Ω CS

φi,k = 1 （9）
∑
βmn ∈ Ω E

φi,mn = 1 （10）
式中：e reqi 为充电需求时刻的 SOC；efl为车辆电池

最低SOC，低于该值则认为EV抛锚。

约束式（8）限制了车辆的能量范围，式（9）与式

（10）则分别约束了充电站选择与路径选择。

2)配电网约束。在电网运行过程中，维持网

络节点的电压在一个合理可控的范围是一项重

要任务。而规模化的聚集充电行为将会导致节

点负荷急剧增大，节点电压受此影响会发生跌

落。因此，本文所建立的模型中必须考虑配网的

潮流约束和安全约束，如下式所示：

-P CS
t,i - P load

t,i = Ut,i∑
j ∈ i
Ut,j (Gijcosθt,ij + Bij sin θt,ij )

（11）
-QCS

t,i - QLOAD
t,i = Ut,i∑

j ∈ i
Ut,j (Gijsinθt,ij - Bij cos θt,ij )

（12）
U min
i ≤ Ut,i ≤ U max

i （13）
I minij ≤ Iij,t ≤ I maxij （14）

式中：P CS
t,i ，Q

CS
t,i 分别为配电网节点 vi的充电有功负

荷与无功负荷；Ut,i，Ut,j分别为配网节点 vi和配网

节点 vj的实时电压，vi,vj ∈ Ω DN，Ω DN为配电网节点

集合；P load
t,i ，QCS

t,i 分别为常规有功与无功负荷；Gij，Bij

分别为支路电导与电纳；θt,ij为相角差；U max
i ，U min

i

分别为节点电压上、下限；I maxij ，I minij 分别为电流上、

下限。

本文以基准电压 10.6 kV的拓扑作为仿真配

网环境[20]，因此电压上、下限分别设置为 0.95（标

幺值）与1.05（标幺值）。

3）交通路网约束。交通路网模型为研究路

径规划的基础，因此，引入图论分析方法对城市

交通路网GTN进行建模描述。针对给定的交通路

网GTN进行如下建模[21]：

ì

í

î

ï

ï
ïï

ï

ï
ïï

GTN = (Ω N,Ω E,ΩW)
Ω N = { }βm |m ∈ Ω N

Ω E = { }βmn | βm ∈ Ω N, βn ∈ Ω N,m ≠ n
ΩW = { }wmn | βmn ∈ Ω E

（15）

式中：Ω N为节点集合，即交通路网 GTN的节点集

合；Ω E为有向弧段的集合，即交通路网GTN的路段

集合；ΩW为路段权值集合，即交通路网GTN的道路

路阻，表示路段的量化属性。

其中路段长度、通行速度、行程时间以及出

行费用等可作为路段权值wmn进行量化研究。

进一步，为对交通路网GTN进行量化赋值，通

过邻边矩阵E = amn将道路路阻分配到各路段上。

amn =
ì

í

î

ïï
ïï

wmn βmn ∈ Ω E

0 βm = βn
∞ βmn ∉ Ω E

（16）

邻边矩阵E最终表示如下：

E =
é

ë

ê

ê

ê

ê
êêê
ê

ù

û

ú

ú

ú

ú
úúú
ú

0 w12 w13 ⋯ ∞
w21 0 w23 ⋯ ∞
∞ w32 0 ⋯ ∞
⋮ ⋮ ⋮ ⋱ ⋮
∞ ∞ ∞ ⋯ 0

（17）

式中：¥为节点βm与βn之间不存在连接路段。

因此，电动汽车车主通过搜索路段权值 wmn

进行最优路径规划。行驶路线的拓扑限制表示

如下：

∑
n = L EVt,i

L CSk

φi,mn - ∑
n = L EVt,i

L CSk

φi,mn =
ì
í
î

ï

ï

1 m = LEVt,i0 m ≠ LEVt,i ,LCSk
-1 m = LCSk

（18）
式中：LEVt,i 为当前位置；LCSk 为分配充电站位置。
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电动汽车从 LEVt,i 到 LCSk 的路径按照起始节点、

中间节点以及终止节点进行规划，保证所选路线

可以顺序连接。

2.2 基于双层FMDP的电动汽车充电与路径决

策构建模型

强化学习方法通过智能体与环境的交互，采

用探索-利用策略进行试错，以获得奖励值，并基

于此建立状态与动作的最优映射关系。在电动

汽车充电引导问题中，车主作为智能体，感知交

通和电气化环境信息，并通过获得的奖励值做出

充电站选择和行驶路线的决策，直至到达目的

地。这一过程符合有限马尔科夫链的决策模型，

即有限马尔科夫决策过程，它被广泛应用于包括

配电网控制和能量调度在内的时序决策问题。

针对电动汽车充电引导问题，本文提出双层 FM⁃
DP模型，解耦充电站推荐与路径选择，以实现更

高效的调度。本文所提模型的具体建模如下文

所示。

2.2.1 状态

状态代表智能体对环境信息的实时感知。

状态空间则代表所有可能状态的集合。

1）上层网络。考虑到充电站的推荐本质是

EV充电需求与CS能量资源的时空匹配问题，将

上层状态 suppi 分为 EV，CS与DN三方面的实时信

息，即

suppi = {  t,eEVt,i ,LEVt,i
EV

,   πCS
t,k ,ξ CSt,k ,LCSk

CS
, P DN

t,i ,U DN
t,i

DN
}

（19）
式中：eEVt,i 为 EV的 t时刻的实时 SOC，在上层中该

值即为 ereqt,i ；ξ
CS
t,k 为充电站状态变量，ξ CSt,k ≥ 0表示站

内空闲桩数量，否则表示排队等待人数；P DN
t,i ，U DN

t,i
分别为配电网节点的负荷与电压。

2）下层网络。一旦上层输出了目标充电站，

下层将向着该目的地进行导航。因此，下层状态

s lowi,t 可以表示为

s lowi,t = {  t,eEVt,i ,LEVt,i
EV

,    L targeti,k ,v̄mn,dmn
TN

}
（20）

式中：L targeti,k 为目标充电站位置。

2.2.2 动作

动作是在给定环境下智能体所做出的决策。

1）上层网络。上层动作输出被定义为所推

荐充电站的索引，其数学描述如下式所示：

auppi = { }LCSk （21）
2）下层网络。对于一个给定路网 GTN，驾驶

导航问题是一个离散的路径选择问题，其正是下

层所需要解决的。下层的动作决策可以表示为

下式：

a lowt,i = { }βmn （22）
将得到的一系列决策动作 a lowt,i 依次连接构建

最优导航路径Ψ low
t,i 。EV根据该路径Ψ low

t,i 从当前

位置 LEVi,k 进行行驶直至抵达目标充电站的位置

L targeti,k 。最优导航路径Ψ low
t,i 构建如下：

Ψ low
t,i =∑

L EVt,i

L targeti,k

a lowt,i （23）
2.2.3 奖励

智能体在执行动作后的及时反馈，是帮助智

能体学习特定能力的重要一环。

1）上层网络。在上层，充电站的动作选择将

会直接影响用户到站后的充电费用Cchi 、等待时间

T wt
i 以及充电时间T ch

i 。与此同时，规模化EV的充

电选择则会影响到配电网的运行状态。因此，将

这三项作为第一层智能体的奖励函数，如下式

所示：
r uppi = -Cchi - ω (T wt

i + T ch
i ) -

1
NDN ∑

i ∈ Ω DN

|

|
||

|

|
||
Ut,i - U *

i

U *
i

（24）
式中：U *

i 为配电网节点的额定电压；NDN为配网节

点的数量。

2）下层网络。结合总体优化目标以及上层

奖励设计，下层智能体的奖励主要包括用户导航

过程中的电池电量成本以及道路时间成本。一

旦车辆抵达目标充电站，将给予智能体一个正的

奖励。相反，如果 EV在电池耗尽前仍没有抵达

目的地，用户则需要自行呼叫拖车救援。因此，

智能体将会得到一个负的惩罚。为此，将下层奖

励值作为交通路网GTN的道路路阻wmn，并且赋值

到各交通路段 βmn上。智能体通过对比各道路路

阻wmn带来的奖励或者惩罚的反馈确定所要采取

的当前动作，如下式所示：

wmn = r lowt,i

=
ì

í

î

ï
ï
ïï

ï
ï
ïï

-dmnφmnπ̄CS μ + ωdmn
v̄mn

φi,mn LEVt + 1,i≠L targeti,k

ωarr      LEVt + 1,i = L targeti,k

-ωtow     eEVt,i - μdmnQi

φi,mn <eflat
（25）

式中： LEVt + 1,i为 EV下一时刻位置；ωarr为一个显著

的导航成功奖励；-ωtow为导航失败惩罚项，即该

区域的拖车成本。
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EV下一时刻位置  LEVt + 1,i由当前位置  LEVt,i 以及路径

选择动作a lowt,i 决定。

2.2.4 状态-动作价值函数

状态-动作价值函数用于评价基于当前策略

π下执行动作后，智能体能够获得的累计期望奖

励。虽然上层与下层智能体分别依赖策略πupp与
πlow，它们的状态-动作价值函数QΨ ( s,a )（Q-value）
相同，如下式所示：

QΨ ( s,a ) = E [∑
h = 0

H

γhrt + h |st = s, at = a ] （26）
式中：H为时间步的视野；γ为折扣率。

在 EV充电导航问题中，智能体的目标是求

取最优策略 Ψ *，其等价于求取能够获得最大
QΨ ( s,a )的策略：

QΨ* ( s,a ) = max
Ψ
QΨ ( s,a ) （27）

3 基于Rainbow架构的求解方法

本文提出的求解方法采用Rainbow算法，该

算法基于DQN架构，通过整合双重DQN机制、优

先级经验回放、Dueling网络结构、辍学层技术和

学习率衰减等机制，有效提升了算法在双层决策

问题求解中的学习效能、决策精准度和探索能

力，同时增强了模型的泛化性和适应性。因此，

本文基于 Rainbow算法进行双层决策问题的

求解。

本文所提方法的训练流程如图 2所示。单次

回合中，逐辆进行推荐电动汽车，上层智能体获

取上层环境状态 suppi,k ，并基于上层评价网络选取目

标充电站，然后将该目标充电站 auppi 传送至下层

智能体的状态空间 s lowi,t 。
其次，下层智能体接收到目标充电站位置

L targeti,k 时，开始获取下层环境状态 s lowi,t ，执行动作

a lowt,i ，计算智能体所获得的即时奖励 r lowt,i ，观察新的

环境状态 s lowi,t + 1，并将样本 ( s lowi,t ,a lowt,i ,r lowt,i ,s lowt,i + 1 )存放至

经验池Dlow中。通过上述交互累积历史样本，根

据 TD-error和优先回放机制，抽取高误差样本组

成mini-batch。接着，对下层评价网络进行梯度

下降，更新网络参数 θ low, +，间隔Nr步将其复制到

下层目标网络 θ low, -。
最后，当车主到达后，计算上层智能体对应

奖励 r uppi 和下一状态 suppi,k + 1，并按照与下层智能体

相同的更新机制来优化其网络。特别地，学习率

αn将随着回合数倒数衰减。重复上述步骤直至

达到预设的最大回合数。

4 算例分析

4.1 算例配置

本文采用南京市实际路网拓扑和运营充/换
电站构建仿真环境，如图 3所示。其中，本次实验

中使用的城市道路实时运行通行数据来自Open
Street Map平台（https：//www.openstreetmap.org/），

同时使用的充/换电站的配置和运营数据来自充

电吧平台（http：//admin. bjev520. com/jsp/beiqi/pc⁃
map/do）。为了和实际交通路网进行匹配，采用

IEEE 33节点配电网构建城市电网，且 10座充电

站分别接入于节点 4，6，9，13，16，17，20，24，28和
节点 32。本文初始参数配置如表 1所示。训练

环 境 采 用 CPU I9 9960X，GPU RTX2070，RAM
32GB。

图2 基于Rainbow算法的求解流程

Fig.2 Solution process based on the Rainbow algorithm
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表1 仿真环境初始参数配置

Tab.1 Initial parameter configuration for the simulation environment
参数名称

仿真车辆数

EV电池容量

时间成本系数ϖ

单位距离能耗μ

导航成功奖励warr

导航失败惩罚wtow

最低SOCeflat

参数配置

1 500辆

40 kW·h
86.02元/h
0.2 kW·h/km

100
200
0.05

图3 路网拓扑和运营的充/换电站位置

Fig.3 Road network topology and location of operated
charging/swapping stations

4.2 训练过程

图 4给出了本文所提HDRL策略基于 Rain⁃
bow架构算法求解得到的上、下两层训练奖励曲

线。由图 4可知，上、下两层智能体的奖励初期均

为探索发散过程，经过一段时间训练后才达到收

敛，而收敛区间各不相同。上层智能体大约在训

练 300回合收敛于最大奖励值-86元。然而，下

层智能体需要多训练 500回合才能趋于稳定，并

稳定在 10元附近。二者前期都呈现不稳定的趋

势，因为智能体对环境进行较大程度的探索，并

不断修正策略，直到探寻到最优的充电站和充电

行驶路线。由于下层智能体所在路网环境更加

复杂，且需要考虑到上层的充电站选择策略，则

下层智能体需要花费更多的回合来探索最优路

线引导策略。

4.3 测试结果

图 5为本文所提基于HDRL的方法和基于无

序引导方法的引导结果对比图。基于无序引导

方法是上层决策直接选择离充电触发位置距离

最近的充电站。而下层决策通过Dijkstra算法选

择最短的行驶路线。

图5 不同时段下HDRL与无序引导方法的路径规划结果

Fig.5 Path planning results of HDRL and disorder
guidance methods at different time periods

由图 5可知，电动汽车在三个不同的时间段

进行测试，都从相同的出发点行驶向一个相同的

充电站。早上选择 07：00—09：00时间段，下午选

择 13：00—15：00时间段，晚上选择 17：00—19：00
时间段，每个时间段内无序决策引导下只有单条

路线可供选择。而经过本文所提方法引导，一共

规划七条充电行驶路径，EV用户可选择不同的

路线，有效地避免了交通拥堵等意外事件，提高

了出行效率和便捷性。此外，通过对比三个时间

段的引导路线可知，三个时间段内除了无序方法

引导的路线相同外，其它路线存在差异，说明根

据不同的时段，不同的交通流量，车主可以选择

不同的路线，满足了充电汽车引导的实时性

要求。

另外，图 6为随时间变化下HDRL与无序引

图4 基于Rainbow架构方法的上下层的训练奖励

Fig.4 Training rewards for the upper and lower layers
based on the Rainbow architecture method
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导方法的电动汽车分布结果。充电站的位置分

布具有其特殊性，从整体上看，充电站 5~8分布在

市区，而其它充电站集中在郊区区域。由图 6可
知，在充电高峰期 11：00—13：00 和 17：00—
21：00，经过无序引导方法引导的电动汽车主要

集中于充电站 7~8，这容易造成充电拥堵和排队

过长的现象，大大影响了充电效率，而经过本文

所提方法的引导，EV分布比较分散，充电站 4~8
都存在适量的充电汽车，有效缓解了高峰期的充

电压力。

图6 不同时间下HDRL与无序引导方法的EV分布结果

Fig.6 EV distribution results of HDRL and disorder
guidance methods at different time periods

图 7为不同时间下HDRL与无序引导方法的

总时间花费和总费用花费对比图。表 2为HDRL
与无序引导方法的时间和成本花费平均值。由

图表可知，在无序方法引导下，09：00—10：00时
段到达第一个总时间峰值区间，20：00—22：00时
段到达第二个总时间峰值区间，用户的平均总时

间花费为 61.12 min。在 13：00时附近用户花费

的总费用达到了最大值 52.26 元，一天平均费用

花费约为 30.15元。本文所提方法在成本方面均

有所降低，车主在 09：00—10：00期间平均时间花

费仅为 56.55 min，降低了 6.4%，同时在 20：00—
22：00期间成本为 54.57 min，降低了 10.72%。在

13：00时左右花费的成本降低了 5.08 元，一天平

均总费用为24.67元，降低了18.18%。

相比无序引导方法，本文方法综合考虑了电

动汽车用户、充电站、交通网和配电网的利益，通

过对存在充电需求的车辆进行有序引导，实时输

出最优充电站位置和充电行驶路线，避免了大量

车辆集中涌向少数热门充电站而导致排队等待

时间过长的问题，车主能更快地抵达充电站或者

目的地，有效缩短了整体的时间花费，同时也减

少了行车成本。

进一步，图 8展示了在HDRL与无序引导方

法引导下在 20：00时刻的配电网节点电压分布。

由图 8可知，在配电网的 13~17节点和 30~33节
点，无序方法下都出现了电压违规现象，电压值

低于规定的低电压阈值 0.95（标幺值），对电网的

稳定性造成了影响。而采用本文所提的方法则

电压未发生电压越限现象。说明本文所提HDRL
方法可减少电动汽车聚集充电，实现 EV的有效

充电引导，缓解了配电网压力，提高了充电的安

全性和稳定性。

图8 HDRL与无序引导方法在20：00节点电压分布

Fig.8 HDRL and disorder guidance method at
20：00 node voltage distribution

4.4 方法对比

最后，本文选择其他两种DRL策略来综合对

比HDRL的应用效果，其中深度Q网络采用传统

图7 不同时间下HDRL与无序引导方法的时间和成本花费结果

Fig.7 Time and cost of HDRL and disorder guidance
methods at different times

表2 HDRL与无序引导方法的时间和成本花费平均值

Tab.2 Average time and cost of HDRL versus
disorder guidance methods

时间

平均值

无序方法

总费用/元
30.15

本文方法

总费用/元
24.67

无序方法

总时间/min
51.32

本文方法

总时间/min
45.49
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FMDP训练范式，竞争深度网络（dueling deep Q
network，DDQN）采用本文的基于约束条件转换成

奖励惩罚的训练范式。图 9和图 10分别给出了

三种方法持续 100 d的累积平均总成本（费用成

本和时间成本之和）和在 20：00时刻的配电网节

点电压分布。由图可知，采用DQN累计的 100 d
平均总成本最低，约为 11 000元，因为基于DQN
方法的架构简单且计算效率高。

图9 不同策略持续100天的累计平均总成本

Fig.9 Cumulative average total cost of different
strategies over a period of 100 days

图10 不同策略下节点电压分布

Fig.10 Node voltage distribution under different strategies
然而传统的DQN中的奖励没有考虑到安全

约束，DQN的训练过程主要侧重于最大化累积奖

励，而没有将安全约束（如电压越限）直接纳入优

化目标中，造成了电压越限现象。虽然DDQN和

HDRL方法的平均总成本均高于DQN方法，分别

为 15 000元和 12 500元，然而HDRL和DDQN未

出现电压越限现象。

此外，表 3给出了上述三种方法的评估指标，

三种方法均能在 0.17 s完成决策制定。由于

HDRL是基于 Rainbow架构，引入了多种改进机

制，智能体经过训练得到的累计奖励比较低，

HDRL的总费用和总时间均低于DDQN。但更多

的改进机制所需的训练时间也有所增加，分别比

DQN和DDQN方法多出87.9%和57.4%。

表3 DQN，DDQN和HDRL策略的评价指标对比

Tab.3 Comparison of the evaluation indicators for
DQN，DDQN and HDRL strategies

方法

DQN
DDQN
HDRL

总费用/元
49.24
57.89
54.12

总时间/元
57.26
67.59
61.23

训练时间/h
5.31
6.34
9.98

决策时间/s
0.16
0.16
0.17

5 结论

本文提出了基于分层深度强化学习的实时

充/换电引导策略。通过构建双层决策架构，有效

地将充电站推荐问题和充电行驶路径问题解耦，

并基于 Rainbow算法架构融合多种网络改进机

制，对所提问题进行求解，最后在一个真实的路

网环境中进行了仿真验证。实验结果显示本文

所提方法能够帮助EV车主节省充电成本和充电

时间，与无序引导方法相比，一天平均总费用能

够降低 20%。此外，在缓解充电站充电压力和提

高配电网稳定性方面也具有优势。

尽管在DQN方法框架内加入安全约束理论

上是可行的，并且能够提升智能体在复杂电网环

境中的决策安全性，但目前的AI方法往往未能充

分考虑安全约束对决策结果的影响。未来的工

作将深入研究如何将安全约束有效地融入DQN
算法中，通过优化网络结构和调整训练参数，使

智能体能够在满足安全约束的前提下做出最优

决策。
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