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Improved Virtual Impedance Strategy for Adaptive Reactive Power Equalisation in Shunt Inverters
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Abstract: An improved virtual impedance strategy with adaptive reactive power equalisation and bus voltage
compensation functions was proposed to address the reactive power equalisation and bus voltage drop issues in
parallel inverters in island microgrids. By introducing an enhanced power decoupling strategy based on a second-
order generalized integrator (SOGD , the harmonic virtual voltage drop problem under nonlinear loads was solved,
and the tracking performance of the PI controller was improved. Then, an adaptive virtual voltage drop correction
term was introduced to eliminate the influence of line impedance, and a method for selecting the virtual voltage
drop correction coefficient was proposed. Finally, the effectiveness of the proposed strategy was verified through
simulations, demonstrating improved reactive power equalisation precision and bus voltage compensation in
complex operating conditions.

Key words:shunt inverter; virtual impedance ; reactive power equalisation ; voltage compensation

TEXUR HFR 5T XU RO IR & BIE B 28 07 (A gk S s 7 45 i, 4R,

S AR R 1Y 43 41 X & (distributed generation,
DG) VA & g , HBA AT A M e (0 T T LA S
PR IAAR AR e A0 Ry 58 53 ) T Se AR T Fe
AR H, I B8 AN i) B R I A 1 BT RE DR
QAT B, WR SR A IR IR Gl B L
3z 1777 Az P, FRH 60 I 1550 722 45 47 il
SR Ry T ], B TR S B AE R, B

BT i g o] A 5 T 52 380 2k BHLT A A X
FL AL B 2 S IS I, A7 A DR ARG A D o0 B
NI R IRIAE , AT RE-S BOE AR G R P ORI, £
Bl Uk i Ol GRS S e

B X L TR T A 4 9T AR I A A B )
FHRE G I o3 [, B FH A it SR 2
FIA RS BB X 2 i BT AT 17, £ H Y

ES A 5 A BRA FRHL I H (522703230009) ; F 5 1 ARHE 54 (U24A20148)
YEE B DA (1977—) 5 0, G T AR, SR BRI 5T 05 1) SR B B TR & L S5 3R AL R, Email :274524973@qq.com
WHAESE R RMT(1986—) , I3 AR S TR, 2T 7 A S A AU R | Email : 1442743926@qq.com

21



WA AR 20265F 564 F 1M

AR, S SFERIE T R0 B 1E S T 3 404 Bk AL AR R ek

Je 42 TH F D00 F8 S B2, DT A3 Zh 3 gt
SR B SR E A S AR LS
PR 287 SR 2 B BEL T 15 3072 45 A B L, B T 5
PIFHR I AR 48 TC I D2 7y o SR, AT SR AT
FEAE— S )t , A0 g 404 vl L 1T 7 = 5 T8 2 73 i
AN BN, A 2 B OB 1 e L R I SR
FECR e, A WTFEE ST A RSB BT 5K
M1 S o S5 P 0] R fE AL BEL T A B3 e T 14 93 K
JE AR 25 DR B2 el o SCHR[14-15 1K k40,
BELTSE A S (L, 413 1 MR Gl 1 S e ke e BEL Bt
AR BELAE B , 1EL T2 SRS IR 7% B 2K f Hit RO T %
BI o HG FE RS0 o HeAh, e 4005 BH A FS 1) SR -
TEAIG A HE A0 F ORI 70 L BEL D T BB 1 R (HLHG
BB R 21,

7R AU BELC A B ) 3% i R R I 2 2 TS
R RE D5 AR 1 R, B R 5 A 1 A a B
LRIEREAIA T, PR, RS0 AR T r kM
ST DA A TR IR R, AR, R 2 HOR AT
SRR B ¢ 42 VA R H s R /0 R 030 3 fi 7 =2 (18] 1Y
7 JE

D O WHE T CINE DRV ES 3
¥ 45 5 FEAME ) 8 C A3 3] — 2 R EE BT
B2 8Ty 14 53 S T Te Dy 24 73K B2 1 42 71 LA
LI R G N ENE S o e -0 i R 1 GG
PR AT AR . B, A SR — A B A i
JO7 JC T3 24 53 11 o, T A2 B i B 8 kg 40 B 47T 5K
W&, EETAET

D) Rkt 455 ) L R348 (sec-
ond-order generalized integrator, SOGI) 4 5% i $U BH
PR AR S THEZME TN 1Y PLE ] 2838 15
AETT .

2) [ & N TE S 53 s 51 H R R G
T, foff )i 001 56 S5 1 31, A DR T D 4 90K B A
LT E R

3) L AMEE SIS < 4 ) 3 0 R 2 H T T
HMEE SRS, L PR UE T D 24 73 K5 BE 64 W] f A B
2 o i
1 TE&xFRERG TR MBHE

31 A
1.1 TEEHIRE

SR RE IR I3 A 6 N B S g A R
R 2 A AR g IR IE 17 07 e fa s At
AE. AET oA, TEIM 5 0078 4%, JF BR AR Y 25

22

M AN 17 B LC 05375 g8 S5 R iRl U,

(i=1,2) Tk 0,(i=1,2) [ HAE BRI, P, Q.(i=

1,2) 43 R 56 i 5 3348 2546 H 1A DY D) 8 M e T

R R, + X, (i=1,2) 500 b o i AR g 5 0 3t

Tk 2 (0] O LR B BT 5 P, Q 0 591 A oS4 6 3 e

B DI RTCIN IR U, h B2 R IR
ool

I RA+ix,
U,AO, A
DG, 1 |

. | S
PHOQ — === — > Zus

DG+LCIEE 25 | —{ M

P1+jQ:_ '_l_l_ == >

ISR

2 | S |
v.26, | RAX U200

P JRIRI AR A 1]

Fig.1 Equivalent structure diagram of shunt inverter
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Fig.2  Conventional sag control block diagram of the equivalent

structure of shunt inverter
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Fig.3 Block diagram of d-axis voltage-current dual-loop

control after introduction of virtual inductor
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Fig4 Equivalent diagram of shunt inverter with virtual impedance
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