级联H桥变换器PWM线性调制区共模注入扩增

李钦召¹,赵学民²

(1.郑州电子信息职业技术学院 电子工程系,河南 郑州 451450;2郑州航空工业管理学院 智能工程学院,河南 郑州 450015)

摘要:微电网孤岛运行时,作为接口设备的级联H桥变换器在实现诸如负序补偿等辅助功能时,可能需配置非正弦的脉宽调制(PWM)波。为避免过调制,PWM调制波中正序分量将减小,从而降低变换器最大正序输出电压。对此,提出了一种新颖的共模分量注入技术,以最大化扩增PWM线性调制区。新方案无需在控制器中设置查找表即可实时实施,即独立于控制器,并与任意基于载波的PWM兼容。同时,新技术可用于对称型或非对称型级联H桥,并配合容错PWM一起使用时,可实现变换器的故障容错运行。利用级联H桥变换器样机进行了共模注入PWM测试,实验结果验证了新型PMW线性调制区扩增共模注入技术的效果。

关键词:微电网;级联日桥变换器;脉宽调制;共模注入;线性调制区

中图分类号:TM46 文献标识码:A DOI:10.19457/j.1001-2095.dqcd22955

PWM with Common Mode Injection to Increase Linear Modulation Region for Cascaded H-bridge Inverter

LI Qinzhao¹, ZHAO Xuemin²

(1. Department of Electronic Engineering, Zhengzhou Professional Technical Institute of Electronics & Information, Zhengzhou 451450, Henan, China; 2. School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, Henan, China)

Abstract: When the microgrid is operating in island mode, the cascaded H-bridge (CHB) converter as an interface device may need to be configured with a non-sinusoidal reference wave of pulse width modulation (PWM) when implementing auxiliary functions such as negative sequence compensation. In order to avoid overmodulation, the positive sequence component in the PWM reference wave will be reduced, thereby reducing the maximum positive sequence of the converter output voltage. In this regard, a novel commonmode component injection technique was proposed to maximize the PWM linear modulation region. The new scheme can be implemented in real time without setting up a look-up table in the controller, that is, independent of the controller and compatible with any carrier-based PWM. At the same time, the new technology can be used for symmetrical or asymmetrical cascaded H-bridges, and when used with fault-tolerant PWM, it can realize fault-tolerant operation of the converter. The common mode injection PWM tests were carried out using the CHB converter prototype. The experimental results verify the effect of the new PMW linear modulation area amplification common mode voltage injection technology.

Key words: microgrid; cascaded H-bridge (CHB) converter; pulse width modulation(PWM); common mode injection; linear modulation region

微电网是分布式电源和可再生能源大规模 接入电网的整体解决方案^[1]。微电网中作为接口 装置的三相变换器需提供负序补偿和有源滤波 等^[2],对应基于载波的脉宽调制(PWM)所需的调 制波将非正弦和不平衡,进而调制波的最大正序 分量将减小。 泛应用于微电网^[3-4]。级联H桥可将共模分量添加到PWM调制波中,而不影响电流。文献[5]中引入了一种等效基频共模注入的中点移相法,以允许故障条件下级联H桥产生平衡的线电压。此方法在文献[6]中得到了扩展,进一步允许在特定故障条件下增加线电压。

Y型连接的级联H桥(CHB)多电平变换器广

基于前述文献研究,本文针对在平衡或不平

衡条件下微电网中Y型连接级联H桥变换器,提 出了一种调制波共模注入来最大化扩增PWM线 性调制区的技术。新型共模注入技术可适用于 任何基于载波的PWM,无需利用查找表。同时, 扩增PWM线性调制区共模注入技术与容错PWM 方案一起使用时,可实现变换器的故障容错运行。

1 系统描述

1.1 级联H桥变换器

图1为并网级联H桥变换器电路图。H桥模 块均配置了故障旁路开关,变换器输出采用滤波 电感L_r与电网相连。

图1 并网级联日桥变换器

Fig.1 Grid-connected cascaded H-bridge converter

在每个H桥模块中,开关SW₁和SW₂,SW₃和 SW₄以互补形式工作。设第*n*个H桥模块的直流 电压为*U*₄,则其输出电压*u*_n可定义为

 $u_n = (sw_1 - sw_3)U_{\rm dc} \tag{1}$

式中:sw₁,sw₃为开关状态,取值"1"和"0"分别代 表上管导通和下管导通。

变换器可基于移相脉宽调制(phase-shifted pulse width modulation, PSPWM)和移电平脉宽调制(level-shifted pulse width modulation, LSPWM)进行共模注入。

对于基于载波的PWM方案,调制波代表了所 需的输出相电压 u_a ,但实际 u_a 还取决于其他因素, 如载波频率等。为了确保PWM施加于级联H桥 时处于线性调制区,每相所有H桥模块直流电压 之和 $U_{dex}(x \in \{a, b, c\})$ 必须不小于PWM调制波峰值。

级联H桥变换器的模块化设计可实现故障 容错运行^[7]。图1中旁路开关可用于故障H桥模 块隔离,但故障相的最大输出电压将减小。为避 免不平衡,可以将非故障相的H桥单元也旁路相 同数量,但这样会减小级联H桥的线性调制区, 从而降低了级联H桥的线电压峰值。

1.2 变换器输出功率区分析

并网级联H桥变换器的平均视在功率S为

$$S = \frac{|U_1||U_G|e^{-j\delta}}{Z_{eq}^*} - \frac{|U_G|^2}{Z_{eq}^*}$$
(2)

式中: |U₁|, |U_c|分别为变换器和电网线电压正序分 量有效值;δ为两者间的相移; Z^{*}_{eq}为变换器和电网 间等效阻抗的复共轭。

设调制比为*m*,则*U*₁*l=mU*_{dex}。设变换器产生的有 功和无功功率分别为*P*和*Q*,则推导可得*m*,δ与 *P*,*Q*的关系为

$$\begin{cases} P = \frac{(mU_{dex} - |U_{c}|)|U_{c}|}{Z_{eq}^{*}}\cos\delta \\ Q = \frac{mU_{dex}|U_{c}|}{Z_{eq}^{*}}\sin(-\delta) \end{cases}$$
(3)

选取*m*和δ可满足既定目标,但不会改变变 换器能够输出的*P*,*Q*工作点。因此,变换器能够 实现的*P*,*Q*工作点可通过将δ∈[-π,π]和线性调 制范围内的*m*代入式(3)计算得到,并可形成*PQ* 平面中的一个输出功率区。*PQ*平面中该区域的 原点可通过将*m*=0代入式(3)计算得到,而区域 边界则可将不同δ对应线性调制区中最大*m*代入 式(3)计算得到。

当变换器无需实现辅助功能时,变换器的输出功率区在*PQ*平面中为一个以输出原点为中心的圆,如图2所示。

然而,变换器需实现辅助功能时,为确保 PWM线性调制,输出功率区与相移δ有关,图2中 绘制了当PWM调制波必须包含固定负序分量以 提供负序补偿时的变换器输出功率区。负序分量 增加对应正序分量减少,因为U_{dex}需大于PWM调 制波峰值。因此,提供负序补偿后变换器的输出 功率区将缩小,且不再为圆形,见图2。

2 共模注入技术

2.1 共模分量生成和注入

定义 $u_x(t)$ 为对称或非对称级联H桥输出电 压,那么 $|u_x(t)| \leq U_{dex}$ 可确保线性调制区运行。因 此,当调制波偏差 $u_{xe}(t) = |u_x(t)| - U_{dex} > 0$ 时,才需要 对调制波进行调整。定义k如下:

$$k = \underset{x \in \{a, b, c\}}{\operatorname{argmax}} \left[u_{xe}(t) \right]$$
(4)

那么为了确保 $|u_k(t)| \leq U_{dex}$ 的最小共模电压 $u_0(t)$ 如下式:

$$u_{0}(t) = \begin{cases} \operatorname{sign} \left[u_{x}(t) \right] u_{xe}(t) & u_{xe}(t) > 0 \\ 0 & u_{xe}(t) \le 0 \end{cases}$$
(5)

式(5)计算得到的共模电压可直接用于修正 PWM 调制波:

$$u_x^*(t) = u_x(t) - u_0(t)$$
 (6)

式中:u_x^{*}(t)为修正后的调制波。

利用式(6)对 PWM 调制波进行修正后,可以 增加 PWM 调制波的正序分量,直到 $u_x(t)-u_y(t)$ = $U_{dex}+U_{dey}(y \in \{a, b, c\})_{\circ}$

定义一个集合[α,β,γ],分别对应*abc* 三相级 联日桥中非故障日桥模块的数量,取[α,β,γ]= [3,3,3]或[3,2,3]时,包含正、负序分量的PWM调 制波(u_a,u_b 和 u_c)和修正后调制波(u_a^*,u_b^* 和 u_c^*)的 波形如图3所示。图3中, u_a^*,u_b^* 和 u_c^* 均在线性调 制区中实现了正序分量的最大化。由于在两种 配置下都实现了调制波的最大正序分量,故[3,3, 3]配置下调制波峰值大于[3,2,3]配置。同时,由 共模注入导致的修正前、后调制波之间的相移可 在线电压中得到抵消。

图3 基于共模注入的PWM调制波修正

为 PWM 和闭环控制器的中间环节,可适用于任何基于载波的 PWM 和闭环控制器。进一步,如果使用了容错 PWM 方案并适当调整 U_{dex},则所提出的共模注入技术有助于实现变换器的故障容错运行。

2.2 对变换器功率输出区的影响分析

为确保三相平衡,使用所设计的共模注入技术时,系统可达到的最大线电压峰值U_{LLmax}等于较小两相总直流电压之和,即

$$U_{\text{LLmax}} = \sum_{x \in \{a,b,c\}} U_{\text{dex}} - \max(U_{\text{dea}}, U_{\text{deb}}, U_{\text{dec}}) \quad (7)$$

式(7)表明,诸如[3,3,3],[3,3,2],[3,2,2]和 [2,2,2]配置, U_{LLmax} 分别为 $6U_{de}$, $5U_{de}$, $4U_{de}$ 和 $4U_{de}$, 并可依此类推。采用所提出的共模注入技术可 获得这些线电压最大峰值,因为在 $lu_x(t)-u_y(t) | \le U_{dex}+U_{dey}$ 条件下进行 $u_0(t)$ 注入,即可扩增线性调 制区。此外,即使存在一相所有H桥模块均被旁 路,也可获得平衡的线电压,例如对于[3,3,0]配 置, $U_{LLmax}=3U_{de}$ 。对于不同配置,由于可获得的最 大线电压等于较小两相总直流电压之和,故所提 出的方法会最大化线性调制区。

当并网级联H桥的PWM调制波必须包含负 序分量时,变换器可以提供的最大线电压取决 于相移δ。换言之,U_{LLmax}和IU₁的范围取决于δ, 此时变换器的输出功率区不再为圆形区域。图 4示出了在各种配置下变换器输出功率区,不失 一般性,设负序分量的相角相对于电网正序分 量为0。

图 4a 为无故障[3,3,3] 配置下绘制的变换功 率输出区,采用共模电压注入前后的区域均具 有 $2\pi/3$ 的旋转对称性,且共模注入后,对所有δ, U_{LLmax}均增加。随着H桥模块故障的发生以及被 旁路,如图4b~图4d所示,若PWM调制波包含负 序分量,则尽管负序分量的角度改变时,级联H 桥在PO平面上的输出功率区仍围绕着变换器的 输出原点旋转,但其已失去旋转对称性。同时, 在H桥模块故障条件下使用共模注入技术,对所 有 δ , U_{Hmax} 仍增加。在某些情况下, 如图4c所示, 共模注入可使级联H桥仅能以单位功率因数提 供有功功率。但图4d中,无论是否使用共模注 入,级联H桥都无法以单位功率因数提供有功功 率。故当使用所提出的PWM 共模注入技术时, 级联H桥的容错性更好,因为变换器可在更大范 围故障下保持并网运行。

Fig.4 Output power region analysis of converter with different configurations

2.3 级联H变换器的控制器框图

图 5 为级联 H 桥变换器控制系统框图。正、 负序电流均采用 PI 调节器控制。生成负序电压 补偿量后,与功率控制分量叠加以获取 PWM 调 制波 u_a,u_b和 u_c,进一步采用共模注入修正调制波 为 u^{*}_a,u^{*}_b和 u^{*}_c。正、负序变换矩阵 **T**₊(θ)和 **T**₋(θ)分 别为

$$T_{+}(\theta) = \frac{2}{3} \begin{bmatrix} \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta - 4\pi/3) \\ \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta - 4\pi/3) \\ 1/2 & 1/2 & 1/2 \end{bmatrix}$$
(8)

$$T_{-}(\theta) = \frac{2}{3} \begin{bmatrix} \cos\theta & \sin(\theta - 4\pi/3) & \cos(\theta - 2\pi/3) \\ \sin\theta & \sin(\theta - 4\pi/3) & \sin(\theta - 2\pi/3) \\ 1/2 & 1/2 & 1/2 \end{bmatrix}$$
(9)

式中: θ为电网相位。

由
$$T_{+}(\theta)$$
可计算变换器正序 d,q 轴电流 $i_{d_{1+}},i_{q_{1+}}$ 和 $i_{0_{1+}}$ 为
「 $i_{q_{1+}}$] 「 $i_{q_{1+}}$ 」

$$\begin{bmatrix} \mathbf{i}_{d1} + \\ \mathbf{i}_{d1} + \\ \mathbf{i}_{01} + \end{bmatrix} = \mathbf{T}_{+}(\boldsymbol{\theta}) \begin{bmatrix} \mathbf{i}_{a1} & \mathbf{i}_{b1} \\ \mathbf{i}_{b1} - \mathbf{i}_{c1} \\ \mathbf{i}_{c1} - \mathbf{i}_{a1} \end{bmatrix}$$
(10)

式中:i_a, i_b和 i_c为三相变换器电流。

正序d,q轴电网电压 u_{dG+}, u_{aG+} 和 u_{0G+} 为

$$\begin{bmatrix} u_{dG +} \\ u_{qG +} \\ u_{0G +} \end{bmatrix} = T_{+}(\theta) \begin{bmatrix} u_{abG} \\ u_{bcG} \\ u_{caG} \end{bmatrix}$$
(11)

式中: u_{abG} , u_{beG} 和 u_{caG} 为三相电网线电压。 负序d,q轴电网电流 i_{dG+} , i_{aG+} 和 i_{0G+} 为

$$\begin{bmatrix} i_{dG+} \\ i_{qG+} \\ i_{0G+} \end{bmatrix} = T_{-}(\theta) \begin{bmatrix} i_{aG} - i_{bG} \\ i_{bG} - i_{cG} \\ i_{cG} - i_{aG} \end{bmatrix}$$
(12)

式中:*i*_a,*i*_b和*i*_c为三相电网电流。

图5 控制系统框图

Fig.5 Block diagram of the control system

图 5 中, θ 由锁相环得到, $令 u_{qC+}=0$ 可得变换 器传递的有功和无功功率分别为 $P=(u_{dC+}i_{d+})/2$ 和 $Q=(u_{dC+}i_{q+})/2$ 。设定有功参考功率 P^* 和无功功 率参考 $Q^*=0$ 后,可得 PWM 调制波为

$$\begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = T_{-}(\theta_{1})^{-1} \begin{bmatrix} k_{i-} \int_{0}^{t} i_{dG-}(\tau) d\tau + k_{p-} i_{dG+}(t) \\ k_{i-} \int_{0}^{t} i_{gG-}(\tau) d\tau + k_{p-} i_{dG-}(t) \\ 0 \end{bmatrix} + T_{+}(\theta_{1})^{-1} \begin{bmatrix} k_{i+} \int_{0}^{t} [P(\tau) - P^{*}] d\tau + k_{p+} [P(t) - P^{*}] + u_{dG+} \\ k_{i+} \int_{0}^{t} Q(\tau) d\tau + k_{p+} Q(t) \\ 0 \end{bmatrix}$$

$$(13)$$

其中

式(13)中,等号右边第1项为功率流控制,第 2项为负序补偿。进一步,进行共模注入后得到 $u_a^*, u_b^* 和 u_c^*$ 如下:

 $\theta_1 = \theta - \pi/6$

$$\begin{bmatrix} u_{a}^{*} \\ u_{b}^{*} \\ u_{c}^{*} \end{bmatrix} = T_{-}(\theta_{1})^{-1} \begin{bmatrix} k_{i} - \int_{0}^{t} i_{dG} - (\tau) d\tau + k_{p} - i_{dG} + (t) \\ k_{i} - \int_{0}^{t} i_{qG} - (\tau) d\tau + k_{p} - i_{dG} - (t) \\ 0 \end{bmatrix} + T_{+}(\theta_{1})^{-1} \begin{bmatrix} k_{i} + \int_{0}^{t} [P(\tau) - P^{*}] d\tau + k_{p} + [P(t) - P^{*}] + u_{dG} + \\ k_{i} + \int_{0}^{t} Q(\tau) d\tau + k_{p} + Q(t) \\ 0 \end{bmatrix} + \begin{bmatrix} \xi_{a} \operatorname{sign} [u_{a}(t)] u_{ae}(t) \\ \xi_{b} \operatorname{sign} [u_{b}(t)] u_{be}(t) \\ \xi_{c} \operatorname{sign} [u_{c}(t)] u_{ce}(t) \end{bmatrix}$$

$$(14)$$

其中

$$\xi_{x} = \begin{cases} 1 & u_{xe}(t) > 0 \\ 0 & u_{xe}(t) \le 0 \end{cases} \quad x \in \{a, b, c\}$$
(15)

式中:ξ"为注入系数。

3 实验验证

为验证所设计的级联H桥变换器PWM线性 调制区最大化的共模注入技术,搭建了测试平台 后开展了实验验证。实验系统主要参数如下:级 联H桥额定输出线电压U_{LI}=208 V;级联H桥输出 额定频率 $f_{s}=50$ Hz;H桥子模块直流电压 $U_{ds}=65$ V; 每相H桥模块数量m=3;级联H桥PWM开关频率 f_a=4.2 kHz; 滤波电感L=1.5 mH; 网侧电感L= 1 mH;滤波电容 C_{f} =15 μ F;滤波阻尼电阻 R_{f} =3.3 Ω ; 负载功率 $P_1=2$ kW。,变换器经由含阻尼电阻 R_i 的 LCL滤波器并网,同时配置额定功率为2kW的不 平衡负载,负载为Y型连接,分别为 $R_a=24 \Omega, R_b=$ 24 Ω 和 *R*=31 Ω 。实验数据采用示波器(64 Xi-A) 以采样频率100kHz进行采集,电压和电流分别 采用ADP300电压差分探头和CP030电流探头进 行测量。图5中PI参数设置为 $k_{n+}=0.01, k_{i+}=0.05$, k_n=0.15 和 k_i=0.5, 控制器采样周期 T_s=167 ns,参 数配置依据为:确保控制器在输入电压范围内变 换器均能稳定运行,而非最优化控制器瞬态性能, 测试中级联H桥以单位功率因数0.5 kW运行。

不提供负序补偿时的电网电流波形如图 6a

所示。然后将级联H桥每相总直流电压U_{dex}从 195 V降低至160 V,采用和未采用共模注入时的 电网电流波形分别如图6b和图6c所示。图中所 示,提供负序补偿后,共模注入后的电网电流将 保持更好的正弦度,谐波含量更低。

进一步,将U_{dex}从195 V以5 V的步长逐步降 低至最低值150 V,则不同U_{dex}下,采用和未采用 共模注入时的电网电流 THD 如图 7 所示。对比 测试结果表明,若使用所提出的共模注入技术, 则可以在较低的U_{dex}下保持较小的 THD。值得注 意的是,变换器产生的有功和无功功率取决于 IU₁I,而IU₁I又取决于调制比和可利用的U_{dex}。由于

*U*_{dec}较低,则需要较高的调制比才能产生相同的 *IU*₁,故图7中THD增加时*U*_{dec}的下限对应于调制 比的上限,即线性调制区的边界。图7中的结果 证明了所设计的共模注入技术扩增了PWM线性 调制区。

将 c 相中1个H桥模块旁路,然后保持 U_{dex}为 195 V 进行变换器故障容错运行测试得到级联H 桥三相输出相电压波形如图8所示。测试结果证 明了共模注入技术在系统故障容错运行时仍可 使用。

4 结论

本文设计了一种扩增微电网中级联H桥变 换器PWM线性调制区的共模注入技术。总结全 文可得主要结论如下:

1)新型共模注入设计可充分利用级联H桥 每相最大总直流电压,从而对PWM调制波进行 实时修正,故无需查找表;

2)共模注入可在任意基于载波的PWM中实施,即其与变换器所采用的控制方法解耦,故适用范围广,可用于对称和非对称级联H桥拓扑;

3) 若级联H桥中有H桥模块旁路并采用容错PWM方案,则所提出的共模注入技术可在系

统故障容错运行时同步施加。

参考文献

 [1] 刘迎澍,陈曦,李斌,等.多微网系统关键技术综述[J].电网 技术,2020,44(10):3804-3817.

Liu Yingshu, Chen Xi, Li Bin, *et al.* State of art of the key technologies of multiple microgrids system[J]. Power System Technology, 2020, 44(10): 3804–3817.

[2] 赖纪东,谢天月,苏建徽,等.基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制[J].电力系统自动化,2020,44(16):121-129.

Lai Jidong, Xie Tianyue, Su Jianhui, *et al.* Coordinated control of voltage unbalance compensation in islanded microgrid based on particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2020, 44(16):121–129.

- [3] 王哲,李耀华,李子欣,等.基于阻抗特性的级联H桥型PET 并网稳定性分析[J].电网技术,2020,44(3):1070-1078.
 Wang Zhe, Li Yaohua, Li Zixin, *et al.* Stability analysis of gridconnected cascaded H-bridge PET based on impedance characteristic[J]. Power System Technology,2020,44(3):1070-1078.
- [4] Mortezaei A, Simes M G, Bubshait A S, et al. Multifunctional control strategy for asymmetrical cascaded H-Bridge inverter in microgrid applications[J]. IEEE Transactions on Industry Applications, 2017, 53(2):1538–1551.
- [5] Rodriguez J, Hammond P W, Pontt J, et al. Operation of a medium-voltage drive under faulty conditions[J]. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1080–1085.
- [6] Lezana P, Ortiz G. Extended operation of cascade multicell converters under fault condition[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7):2697–2703.
- [7] 张影,祝杰,王宁,等. CHB 逆变器 3N+1 与 SVM 容错切换[J]. 电气传动,2020,50(12):21-26.
 Zhang Ying, Zhu Jie, Wang Ning, *et al.* 3N+1 and SVM fault-tolerant switching of CHB inverter[J]. Electric Drive, 2020, 50

(12):21-26.

收稿日期:2021-01-14 修改稿日期:2021-03-01