单极性电流控制半桥电压平衡电路研究

张先进¹,吴迪²

(1.江苏工程职业技术学院 江苏省风光互补发电工程技术研发中心,江苏 南通 226007;2.江苏海洋大学 电子工程学院,江苏 连云港 222005)

摘要:电压平衡电路不但可以将两线制直流微网转变成三线制直流微网,而且还可以应用在平衡串联电 容或电池组电压等场合。半桥电压平衡电路具有结构简单、成本低廉等优点。但是,在互补驱动条件下,当电 感电流工作在双极性时存在无功电流。因此,在前期研究基础之上,提出了单极性电流控制方法,详细地分析 了单极性控制下半桥电压平衡电路工作原理。仿真和实验结果表明,在单极性控制下半桥电压平衡电路能够 有效地实现输出电压均衡功能,并消除无功电流。

关键词:单极性电流;半桥电路;无功电流;电压平衡 中图分类号:TM46 文献标识码:A DOI:10.19457/j.1001-2095.dqcd20678

Research on Half-bridge Voltage Balanced Circuit Based on Unipolar Current Control

ZHANG Xianjin¹, WU Di²

(1. Jiangsu Province Landscape Complementary Power Generation Engineering Research and Development Center, Jiangsu College of Engineering and Technology, Nantong 226007, Jiangsu, China; 2. School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China)

Abstract: A voltage balancing circuit not only may change a two-wire DC power system into a three-wire DC power system, but also can balance voltage of series capacitors or battery packs. A half-bridge voltage balanced circuit is a simple and low-cost topology, but it may have a reactive current when the inductor current works in bipdarity under complimentary driving technology. A unipolar current control method was proposed and the operation principle was analyzed in details. Finally, the simulation and experimental results verify the half-bridge voltage balanced circuit with the proposed control method has a good ability of balancing voltage and eliminating active current in stable and dynamic states.

Key words: unipolar current; half bridge circuit; reactive current; voltage balancing

微型直流电网是一种非常有效的直流输电 系统,它能够将新能源和储能单元等有机组网, 向用户提供高质量的电能^[1-9]。微型直流电网常 采用两线制输电方式,电网中只有一个母线电 压。因此,为了满足用户端不同用电设备对输入 电压的需求,通常要在用户端构造一根中线将此 母线电压转变成两个等级相同或不同的直流电 压^[5-9]。

能够实现该功能的变换器常有半桥电压平 衡电路^[5-8]和双降压半桥电压平衡电路^[9]等。半桥 电压平衡电路除了应用在微型直流电网^[5-7]或单 相整流供电系统¹⁸之中,还可以平衡串联电容或 电池组电压¹¹⁰。半桥电压平衡电路如图1所示。

图 1 半桥电压平衡电路 Fig.1 The balancing circuit with half-bridge voltage

基金项目:国家自然科学基金资助项目(51307089);南通市科技计划项目(JCZ18037); 江苏工程职业技术学院自然科学项目(GYKY2018) 作者简介:张先进(1975—),男,博士,副教授,Email;zxj0203229@163.com

图1中电感电流 i 平均值等于两个不平衡负 载(R1,R2)电流之差。为了简化控制,半桥电压平 衡电路常采用互补驱动^[6-8,10]。图2为互补驱动双 极性电感电流 i_1 和S₁,S₂驱动 U_{ss1} , U_{ss2} 波形。由图 2可知不平衡负载电流差值小时,电感电流运行 在双极性条件下,半桥电压平衡电路输入和输出 端之间存在无功电流交换。

under complementary driving method

文献[9]从半桥电压平衡电路存在的潜在直 通和无功电流等角度出发,研究了双降压半桥 电压平衡电路,并通过适当的控制使每只电感 中电流分别单极性运行。但是,与半桥电压平 衡电路相比,该电路结构复杂、所需器件较多、成 本较高。

为了充分利用半桥电压平衡电路结构特点, 并消除无功电流,本文研究了一种半桥电压平 衡电路的单极性电流控制方法,并详细分析在 此方法下的工作原理。最后,进行了仿真和实 验验证。

1 半桥电压平衡电路和单极性控制 方法

1.1 电路结构

半桥电压平衡电路如图1^[5-8]所示,它由半桥 拓扑、串联输出电容C1和C2等组成,结构十分简 单。图1中,R₁,R₂为两个不平衡负载所对应的 等效电阻;L_N为中线。因此,在办公等场合与大 地相连的中线能够大大地提高可靠性[5-9]。在实 际应用中,根据需要图1中uci可以等于uco也可 以不等于 и [5]。在互补驱动时, 当不平衡负载电 流之差较小时电感电流双极性运行,波形如图2 所示。

1.2 单极性电流控制方法

电流单极性控制等数电路如图3所示。以

uci=uc2为控制目标的电感电流 i 单极性工作基本 思路:电感电流i₁平均值I₁大于零时,S₁工作、S₂不 工作 (见图 3a);电感电流平均值 I_1 小于零时, S_2 工作、S₁不工作(见图3b所示)。这样,图1就可 以工作在类似于两个Buck电路情况下,避免了电 感电流在开关周期内可能出现图3双极性情况。 其控制原理框图如图4所示。

图3 电流单极性控制等效电路

Fig.3 Equivalent circuit under a unipolar current control method

图4 单极性电流控制原理框图 Fig.4 Diagram of the proposed unipolar current control

图4中输入电压uin一半作为输出电压uc2图4 参考值,usi和us2分别是开关管S1和S2的驱动信号。 为了避免S₁和S₂频繁地切换,采用滞环比较器,死 区是为了避免S₁和S₂切换时出现的直通危险。

结合图3和图4,稳态时基本原理描述 如下:

1)当不平衡负载 $R_1 > R_2$ (负载电流 $i_{R_1} < i_{R_2}$) 时,负载处在不平衡状态,电压调节器输出为正 值,S₁工作、S₂不工作;输入电压u_m通过电感L向 负载 R_2 提供不平衡负载电流差值(i_{R2} - i_{R1}),即电感电流 i_L 的平均值 I_L 大于零。

$$I_{\rm L} = i_{\rm R2} - i_{\rm R1} = \frac{1}{T} \int_{t}^{t+T} i_{\rm L} \, \mathrm{d}t > 0 \tag{1}$$

式中:T为开关周期。

2)当不平衡负载 $R_1 < R_2$ (负载电流 $i_{R1} > i_{R2}$)时,负载处在不平衡状态,电压调节器输出为负值, S_2 工作、 S_1 不工作;输入电压 u_{in} 通过电感L向负载 R_1 提供不平衡负载电流差值($i_{R2}-i_{R1}$),电感电流 i_L 的平均值 I_L 小于零。

$$I_{\rm L} = i_{\rm R2} - i_{\rm R1} = \frac{1}{T} \int_{t}^{t+T} i_{\rm L} \, \mathrm{d}t < 0 \tag{2}$$

3)当不平衡负载 $R_1 = R_2$ 时,负载处在平衡状态,电感电流 i_1 的平均值 I_1 近似为零。这与Buck变换器工作在空载时情况类似。

根据前文所述,电感电流平均值*I*_L大于零时, 电流单极性控制的波形如图5所示(电感电流平 均值*I*_L小于零的波形图在此忽略)。根据单极性 电感电流*i*_L情况,电感电流平均值*I*_L大于零又分 为:电感电流*i*_L连续模式(CCM,不平衡负载电流 差值大,图5a所示)和断续模式(DCM,不平衡负 载电流差值小,图5b所示)。

图5 电感电流平均值*I*_L大于零时单极性电感电流 和驱动波形图

Fig.5 Unipolar inductor current and driving signals under the inductor current average value $I_{\rm L} > 0$

对比图2和图5b,可以看出:

1)不平衡负载电流差值小时,单极性电流控制下电感电流是单极性的,输入和输出端之间不存在无功电流;

2)互补驱动时电感电流是双极性的,输入和 输出端之间存在无功电流。

2 工作原理分析

根据前面的基本原理描述,依据电感电流平均值的情况,电路工作过程具体分为I_L大于零、I_L

小于零和*I*_L等于零三种状态。下面仅对*I*_L大于零状态进行分析,其他情况不再赘述。

为了简化分析,假设所有器件均为理想器件,电容 C_1 , C_2 相等且为无穷大;电路工作在稳态,即电容电压 $u_{c1} = u_{c2}$ 。

下面仅分别对电感电流平均值 I_L大于零时, CCM 和 DCM 下半桥电压平衡电路的工作原理进 行分析。

2.1 电感电流 i 连续模式

电感电流 i₁在连续模式下的主要驱动信号 和电感电流波形如图 5a 所示,其等效电路如图 6 所示。

Fig.6 Equivalent circuits under CCM

1)模态 $1[t_1-t_2]$:此时, S_1 导通、 S_2 关断(见图 5a 和图 6a)。在 t_1 时刻之前 S_1 关断,电流 i_1 通过 S_2 的体二极管 D_2 续流。在 t_1 时刻开通 S_1 ,电流 i_1 将从 D_2 切换到 S_1 。在电感L上电压 $u_L=u_{in}-u_{c2}=u_{c1}$ 的作 用下,电感电流 i_L 开始线性上升。该过程持续到 t_2 时刻关断 S_1 为止。

$$L\frac{di_{\rm L}}{dt} = u_{\rm L} = u_{\rm C1} = u_{\rm L} - u_{\rm C1}$$
(3)

2)模态 $2[t_2-t_3]$:此时, S_1 , S_2 关断, D_2 导通(见 图 5a 和图 6b)。在 t_2 时刻关断 S_1 ,电流 i_1 将再次从 S_1 切换到 D_2 续流。在这一模态中,电感上电压 $u_L = -u_{C2}$,电感电流 i_L 从最大值开始线性下降,直 到 t_3 时刻再次开通 S_1 为止。

$$L\frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t} = u_{\mathrm{L}} = -u_{\mathrm{C2}} \tag{4}$$

从t3时刻起,进入下一个工作周期。

由于稳态时*u*_{C1}=*u*_{C2},所以根据伏秒积平衡原理,由式(3)和式(4)可以得到下式:

$$u_{\rm C2} = \frac{(t_2 - t_1)u_{\rm in}}{t_3 - t_1} = \frac{(t_2 - t_1)u_{\rm in}}{T} = Du_{\rm in} \qquad (5)$$

式中:D为S₁的占空比。

显然,这与Buck变换器工作在CCM模式时输入输出关系一致。

2.2 电感电流 i₁断续模式

电感电流i₁断续模式状态下主要驱动信号和 电感电流波形如图5b所示,其等效电路如图6和 图7所示。

图 7 电感电流断续时模态 3 等效电路 Fig.7 Equivalent circuits of mode 3 under DCM

1)模态 1[t_1 — t_2]:此时,S₁导通、S₂关断(见图 5b 和图 6a)。在 t_1 时刻之前由于电流 i_L 为零,所以在 t_1 时刻开通 S₁是零电流开通。在电感 L 电压 u_L = $u_{in} - u_{c2} = u_{c1}$ 作用下,电流 i_L 从零开始线性上升。该 过程一直持续到 t_2 时刻关断 S_1 为止。

2)模态 $2[t_2-t_3]$:此时, S_1 , S_2 关断, D_2 导通(见 图 5b 和图 6b)。在 t_2 时刻关断 S_1 ,电流 i_L 将从 S_1 切换 到 D_2 续流。在电感L电压 $u_L = -u_{C2}$ 作用下,电流 i_L 开始线性下降,直到 t_3 时刻电流 i_L 下降至零为止。

3) 模态 3[t₃-t₄]: 此时, S₁, S₂关断(见图 5b 和 图 7)。从 t₃时刻起, 所有功率器件都没有电流流 过。直到t₄时刻再次开通S₁, 进入下一个开关周期。

由于稳态时*u*_{C1}=*u*_{c2},所以根据伏秒积平衡原 理,可以得到下式:

$$u_{\rm C2} = \frac{(t_2 - t_1)u_{\rm in}}{t_3 - t_1} \tag{6}$$

显然,这与Buck变换器工作在DCM模式时输入输出关系一致。

3 仿真与实验

3.1 仿真分析

仿真条件:开关频率约25 kHz,L=230 μH,

*C*₁ = *C*₂ = 470 μF, 死区近似为2 μs, 输入电压 360 V。

图 8 为电感电流平均值 I_{L} 大于零时仿真 图,图 9 为电感电流平均值 I_{L} 小于零时仿真图。 其中,图 8a、图 8b 中负载电流分别为 i_{R1} =2.8 A, i_{R2} =6.2 A 和 i_{R1} =1 A, i_{R2} =13.4 A;图 9a 和图 9b 中负 载电流分别为 i_{R1} =5.0 A, i_{R2} =2.4 A 和 i_{R1} =12.8 A, i_{R2} = 2.2 A。

由图8、图9可见,在不同负载条件下,仿真 结果与前面的分析是一致的。

Fig.8 Simulation results under $I_1 > 0$

图 9 电感电流平均值 I_L 小于零仿真结果 Fig.9 Simulation results under I_L <0

3.2 实验分析

为了验证前面的分析,进行实验验证,主要 参数与仿真参数一致。其中,S₁和S₂分别采用 SPW47N60C3半导体,电感采用EE55铁氧体,C₁ 和C,为470μF的电解电容。

图 10 为电感电流平均值 *I*_L大于零时主要实验波形图。其中,图 10a为*u*_{C1}=180.3 V,*u*_{C2}=180.1 V, *i*_{R1}=2.8 A 和 *i*_{R2}=6.2 A 时,电感电流 *i*_L断续实验波形;图 10b为*u*_{C1}=180.3 V,*u*_{C2}=180.0 V,*i*_{R1}=1.0 A 和 *i*_{R2}=13.4 A 时,电感电流 *i*_L连续实验波形。图 11 为 电感电流平均值 *I*_L小于零时实验波形图。其中, 图 11a 为 *u*_{C1}=180.1 V, *u*_{C2}=179.9 V, *i*_{R1}=5.0 A, *i*_{R2}= 2.4 A 时, 电感电流 *i*_L断续实验波形; 图 11b 为 *u*_{C1}= 179.8 V, *u*_{C2}=180.0 V, *i*_{R1}=12.8 A, *i*_{R2}=2.2 A 时, 电感 电流 *i*_L连续实验波形。

由图 10、图 11 可见,不论不平衡负载电流 li_{n2}-i_{n1}l偏差如何,电感电流都是单极性的。因此, 输入和输出端不存在无功电流交换问题。

图13 负载R₂电流*i*_{R2}突变实验波形图

图 12 和图 13 分别为负载 R_1 和 R_2 电流突变时 实验波形。图 12 中负载电阻 R_2 电流 $i_{R2} = 1.20$ A 不变,负载电阻 R_1 电流 i_{R1} 在 1.0~7.5 A 之间变化 时实验波形。同时测出 $i_{R1} = 1.0$ A 时输出电压 $u_{C1} = 179.7$ V, $u_{C2} = 179.9$ V, $i_{R1} = 7.5$ A 时输出电压 $u_{C1} = 179.5$ V, $u_{C2} = 179.6$ V。图 13 为负载 R_1 电流 $i_{R1} = 1.2$ A 不变,负载电阻 R_2 电流 i_{R2} 在 0.0~5.0 A 之间变化时实验波形。同时测出 $i_{R2} = 0.0$ A 时输 出电压 $u_{C1} = 179.7$ V, $u_{C2} = 180.1$ V, $i_{R2} = 5.0$ A 时输出 电压 $u_{C1} = 179.4$ V, $u_{C2} = 179.7$ V。

由图 12,图 13 可以看出在负载突变时,输出 电压仍然能够很好地平衡输入电压,但是输出电 压有明显的尖峰。这可以通过优化参数来减少 尖峰。

下面给出不同负载和输入电压下实验数据。 电感电流平均值 *I*_大于零和小于零的实验数据如 表1,表2所示。

表1	电感电流平均值 <i>1</i>	大于零实验数据
----	------------------	---------

Tab.1 Experimental data under I_{I} above zero

$u_{\rm C1}/{ m V}$	$i_{\rm R1}/{ m A}$	$u_{\rm C2}/{ m V}$	$i_{\rm R2}/{ m A}$	$(u_{C1}-u_{C2})/V$
181.0	0.50	181.3	1.4	-0.3
177.8	0.50	178.4	2.5	-0.4
179.6	1.80	179.2	7.0	0.4
179.2	1.20	178.9	12.2	0.3

	表2 电感电流平均值 $I_{\rm L}$ 小于零实验数据					
	Tab.2 Experimental data under $I_{\rm L}$ above zero					
$u_{\rm C1}/{\rm V}$	$i_{\rm R1}/{ m A}$	u_{C2}/V	$i_{\rm R2}/{\rm A}$	$(u_{C1}-u_{C2})/V$		
180.0	1.2	180.3	0.6	-0.3		
179.8	4.5	180.2	2.3	-0.4		
179.6	5.0	179.8	1.2	-0.2		
179.1	11.5	178.7	1.2	0.3		

从表1和表2可以看出:在不同输入电压和 负载情况下,单极性电流控制半桥电压平衡电路 能够很好地实现输出电压均衡。

从仿真和实验结果也可以看出:在单极性电

流控制方法下,当电感电流平均值大于零时,S₁工 作、S₂不工作;反之,S₂工作、S₁不工作;由于电感 电流是单极性的,所以在任何情况下输入和输出 端之间都不存在无功电流流动问题;在负载突变 时,也能够很好地实现输出电压均衡。

4 结论

半桥电压平衡电路结构简单、成本低,但是 在互补驱动时,输入和输出端之间可能存在无功 电流问题。因此,本文研究了一种半桥电压平衡 电路单极性电流控制方法,从而实现半桥电压平 衡电路中电感电流在任何情况下都能单极性运 行,输入和输出端之间不存在无功电流。文中对 其原理进行详细的分析。仿真和实验结果表明 半桥电压平衡电路在电感电流单极性运行控制 方法下能够很好地实现输出电压均衡功能。

参考文献

- 陈景文,张东,党宏社.基于下垂控制的直流微网多储能系统研究[J].电气传动,2018,48(1);42-46.
- [2] 腾昌鹏,王玉斌,周博凯,等.含恒功率负载的直流微网打信 号稳定性分析[J].电工技术学报,2019,34(5):973-982.
- [3] 徐岩,黄馗,张祥宇.风-储-海水淡化直流微网功率协调控制[J].电力系统及其自动化学报,2018,30(3):18-24.
- [4] 刘志博,刘兴杰.独立直流微网中混合储能系统的改进多滞 环控制策略[J].电工技术学报,2018,33(3):490-497.
- [5] 吴卫民,何远彬,耿攀登.直流微网研究中的关键技术[J].电 工技术学报,2012,27(1):98-106,113.
- [6] Kakigano H, Miura Y, Ise T. Low-voltage bipolar-type DC microgrid for super high quality distribution [J]. IEEE Transactions on Power Electronics, 2010, 25(12); 3066–3075.
- [7] 张先进,龚春英,李佳滨.一种半桥电压均衡电路[J].电测与 仪表,2013,50(6):124-128.
- [8] Ming W, Zhong Q. A single-phase rectifier having two independent voltage outputs with reduced fundamental frequency voltage ripples [J]. IEEE Trans. Power Electron, 2015, 30 (7) : 3662-3673.
- [9] 张先进,龚春英.一种高可靠电压均衡电路[J]. 电机与控制 学报,2013,17(1):37-42.
- [10] Dai S, Wang J, Li T, et al. Analysis, design and implementation of flexible interlaced converter for lithium battery active balancing in electric vehicles [J]. J. Power Electron., 2019, 19 (4) : 858–868.

收稿日期:2019-08-07 修改稿日期:2019-08-29