基于改进下垂控制的多逆变器功率分配控制

刘勇¹,刘鹏¹,盘宏斌¹,阳建²,贺生国¹,雷延科¹

(1.湘潭大学 信息工程学院,湖南 湘潭 411105;2.深圳市盛弘电气股份有限公司,广东 深圳 518000)

摘要:多逆变器并联组网运行时,针对传统下垂控制中一次调频和调压能力有限而导致的频率和电压越限问题,提出了一种具有自愈能力的改进下垂控制策略。该策略通过适当提高空载角频率和空载电压,将逆变器实际输出功率与预期功率的差值通过积分环节来调整下垂系数大小,从而实现频率和电压的自愈。在此基础上,分析了下垂系数对功率分配的影响,通过基准逆变器功率变化信息的共享,按容量比设置积分系数,控制不同逆变器下垂系数大小时刻成比例,实现了频率和电压自愈的同时有功和无功功率在多台不同容量逆变器之间的精确分配。建立了系统小信号建模,通过根轨迹法分析了控制器参数变化时对系统稳定性的影响。最后,通过实验和仿真结果验证了所提策略的可行性和有效性。

关键词:多逆变器并联;下垂控制;下垂系数;自愈能力;小信号模型 中图分类号:TM72 文献标识码:A DOI:10.19457/j.1001-2095.dqcd20125

Multi-inverter Power Distribution Control Based on Improved Droop Control

LIU Yong¹, LIU Peng¹, PAN Hongbin¹, YANG Jian², HE Shengguo¹, LEI Yanke¹
(1. College of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan, China;
2. Shenghong Shenzhen Electric Co., Ltd., Shenzhen 518000, Guangdong, China)

Abstract: When multiple inverters are connected in parallel, in order to solve the problem of frequency and voltage overstepping caused by the limited capacity of primary frequency and voltage regulation in traditional droop control, an improved droop control strategy with self-healing ability was proposed. By properly increasing the no-load frequency and no-load voltage, the difference between the actual output power and the expected power of the inverter was used to adjust the droop coefficient through the integral link, so as to realize the self-healing of frequency and voltage. On this basis, the influence of droop coefficient on power distribution was analyzed. By sharing the power change information of the reference inverter and setting the integral coefficient according to the capacity ratio, the droop coefficient of different inverters was controlled to be proportional at different times, and the precise distribution of active and reactive power among inverters with different capacities was realized while the frequency and voltage self-heal was realized. The small signal modeling of the system was established, and the influence of the controller parameters on the system stability was analyzed by the root locus method. Finally, simulation and experimental results verify the feasibility and effectiveness of the proposed strategy.

Key words: multiple inverters in parallel; droop control; droop coefficient; self-healing ability; small signal model

微网作为未来多种微源组网运行的一种趋势,越来越多地被人们关注,为可再生能源的利用开辟了新的途径^[1-2]。近年来,新能源技术迅速发展,越来越多的分布式电源通过电力电子装置接入微网,在带来清洁能源的同时也给微网系统的可靠运行带来了巨大的挑战^[3-4]。下垂控制策略可以根据自身的下垂特性调整功率输出,实现功率在多逆变器之间的分配,但是这将产生频率

和电压的偏差。因此,传统下垂控制只适用于一次控制,微源和负载的不确定性将会导致整个微网系统整体输出功率不足,进而引起频率和电压的越限,因此需要进行二次调频和调压控制^[5-7]。

文献[8]提出了一种变下垂系数的改进下垂 控制,并提出了一种多重主从控制策略,很好地 解决频率偏差问题,但并不适用于采用下垂控制 算法的不同容量逆变器并联运行的情况;文献[9]

作者简介:刘勇(1976—),男,硕士,副教授,Email:xtdx_ly@163.com

在之前改进的基础上,克服了由于变下垂系数的 过程中,不同容量逆变器功率分配的问题,但是 该方法需要将两个不同的控制环路在控制系统 中来回切换,操作复杂;文献[6]中引入了通讯系 统,通过调整下垂系数解决了由于线路阻抗不同 导致的功率分配不均的问题,但没有涉及频率偏 差问题;文献[10]提出了一种无须通信的功率分 配策略,解决了因线路阻抗导致的功率不能合理 分配的问题,但是需要采用本地脉冲信号触发控 制算法进行控制。

下垂控制主要用于多换流器并联运行,各并 联运行的换流器共同维持微电网频率的稳定,但 负载和微源的不确定性将导致频率和电压越限。 本文在以往研究的基础上,首先,提出了一种具 有自愈能力的改进下垂控制算法,并且在此基础 上,分析了下垂系数对功率分配的影响,通过设 置积分系数实现功率在不同容量逆变器间的精 确分配,保证了微源的"即插即用"^[11-12]。其次,通 过建立系统小信号模型,分析了控制器参数变化 时对系统稳定性的影响。最后,通过仿真和实验 验证了文章所提控制策略的有效性和可行性。

1 改进下垂控制

在逆变器输出线路阻抗呈感性时,逆变器的 输出功率可化简为^[13]

$$P = \frac{UU_0}{X}\theta \tag{1}$$

$$Q = \frac{U_0 (U - U_0)}{X}$$
(2)

式中:P,Q分别为逆变器输出的有功和无功功 率; U,U_0 分别为逆变器输出电压和PCC点电压; X,θ 分别为线路感抗和功率角。

传统下垂控制方程可表示为

$$\omega = \omega^* - mP \tag{3}$$

$$U = U^* - nQ \tag{4}$$

式中:ω为电网的输出频率;ω*和U*分别为空载 角频率和空载电压;m和n分别有功一频率下垂 系数和无功一电压下垂系数。

由下垂特性可知,若要使得系统频率稳定为 314 rad/s,那么其下垂控制方程中空载角频率将 大于314 rad/s。因此,本文在空载角频率的选取 上,根据不同电网的允许频率波动范围取其上 限。本文以(50±0.2)Hz为例,取其上限值50.2 Hz, 转换为空载角频率为315.256 rad/s,取整数为 $315 \text{ rad/s}_{\circ}$

根据式(3)可知,引入给定频率 ω_n =314 rad/s, 那么在当前t时刻,下垂系数 m_t 下,输出的功率 P_t 即为与给定频率 ω_n 相对应的功率值,即

$$P_t = (\omega^* - \omega_{\rm n})/m_t \tag{5}$$

假设此时逆变器实际输出的功率值大小为 P,则此时的功率差值为

$$\Delta P = P_{t} - P \tag{6}$$

积分环节通过功率差值来调节下一时刻下 垂系数*m*_{tt}的大小:

$$m_{t+1} = m_t + \Delta m \tag{7}$$

其中

$$\Delta m = \Delta P \times k_{\rm m}/s \tag{8}$$

式中: $k_{\rm m}$ 为有功下垂环节积分系数。

$$\begin{cases} m_{1} = \left(\frac{\omega^{*} - \omega_{n}}{m_{1}} - P\right) \times \frac{k_{m}}{s} + m_{0} \\ m_{2} = \left(\frac{\omega^{*} - \omega_{n}}{m_{1}} - P\right) \times \frac{k_{m}}{s} + m_{1} \\ \vdots \\ m_{t+1} = \left(\frac{\omega^{*} - \omega_{n}}{m_{t}} - P_{t}\right) \times \frac{k_{m}}{s} + m_{t} \end{cases}$$
(9)

稳态时,有下列关系成立:

$$\begin{cases} (\omega^* - \omega_n)/m_{t-1} - P = 0\\ m_t = m_{t-1} \end{cases}$$
(10)

从式(10)可知,在下垂系数变化的过程中, 不断计算预期功率与实际功率的差值,通过差 值调整下垂系数大小,直到预期功率值与实际 输出功率值相等,即达到稳态。改进有功一频 率下垂控制框图如图1所示,其控制方程可表 示为

Fig.1 Block diagram of the improved *P*—*f* droop control 参考有功—频率控制环改进方法,改进无 功—电压下垂控制框图如图2所示,其控制方程 可表示为

$$U = U^* - \left[\left(\frac{U^* - U_n}{n} - Q\right)\frac{k_n}{s} + n\right]Q \quad (12)$$

$$\vec{x} \div k_n \text{ bbt } \vec{x} \text{ bbt } \vec$$

图2 改进无功一电压下垂控制框图

Fig. 2 Block diagram of the improved Q—U droop control

系统整体控制框图如图3所示。系统等效的 前级输入用U_d表示; u_{oabc}, u_{PCC}分别为abc坐标下 逆变器输出端电压和公共点电压; i_{Labc}, i_{oabc}分别为 abc坐标下的电感电流和逆变器输出电流; i_{Idq}, i_{odq} 分别为dq坐标下电感电流和逆变器输出电流; R_f, C_f, L_{line}, R_{line}分别为滤波电感内阻、滤波电容、 线路等效电感,线路等效电阻; Z为本地负载。如 图3所示, 通过功率外环得到电压参考值 u^{*}_{odq}和频 率 ω, 并作为电压、电流环的输入, 得到逆变器控 制电压 u_{dq}, 控制电压经过 SVPWM 调制得到开关 信号来控制开关管的开关。

Fig. 3 Block diagram of the overall system control

2 不同容量逆变器并联运行控制

2.1 有功功率分配

频率为一个全局变量,系统稳定运行后频率 会被拉入同步^[14],根据式(3)可知:

$$m_1 P_1 = m_2 P_2 = \dots = m_n P_n$$
 (13)

不同容量等级的逆变器可以通过调整下垂 系数的大小实现按照容量等级成比例分配功率。 因此,在下垂系数的动态调节过程中,只要时刻 保证下垂系数与额定容量成反比例关系即可保 证功率在各个逆变器之间合理分配。以两台逆 变器为例,假设:

$$\frac{m_{01}}{m_{02}} = \frac{P_2}{P_1} = \frac{2}{3} \tag{14}$$

$$\frac{m_1}{m_2} = \frac{m_{01} + \Delta P_1 k_{m1}/s}{m_{02} + \Delta P_2 k_{m2}/s}$$
(15)

式中: m_{01} , m_{02} 为初始状态下垂系数; m_1 , m_2 为动态 变化过程中的下垂系数; k_{m1} , k_{m2} 均为积分系数。 在式(15)中,如果控制以下关系成立:

$$\frac{k_{\rm m1}}{k_{\rm m2}} = \frac{m_{\rm 01}}{m_{\rm m2}} = \frac{P_{\rm 1}}{P_{\rm 2}} = \frac{2}{3} \tag{16}$$

$$\Delta P_1 = \Delta P_2 = \Delta P \tag{17}$$

那么有:

$$\frac{m_1}{m_2} = \frac{\frac{2}{3} (m_{02} + \Delta P k_{m2}/s)}{m_{02} + \Delta P k_{m2}/s} = \frac{2}{3}$$
(18)

以第2台逆变器为基准,将其功率变化信息 通过通讯装置传输到第1台逆变器,控制两台逆 变器调整过程中功率变化量相同,再通过设置积 分系数实现下垂系数在动态调整的过程中按比 例调整,进而实现无频差的同时保证功率在不同 容量逆变器之间按比例合理分配。

2.2 无功功率分配

结合式(2)和式(4)可知:

$$Q = \frac{U_0 (U^* - U_0)}{X + nU_0}$$
(19)

$$\frac{Q_1}{Q_2} = \frac{X_2 + n_2 U_0}{X_1 + n_1 U_0} \tag{20}$$

由式(20)可知,虽然下垂系数很小,但n_iU₀(*i*=1,2)项不可以忽略,其对无功功率的精确分配将 产生影响,因此,参考2.1节方法,下垂系数在调 节的过程中时刻保证以下等式成立即可保证无 功功率的精确分配:

$$\frac{Q_1}{Q_2} = \frac{X_2}{X_1} = \frac{n_2}{n_1}$$
(21)

3 小信号稳定性分析

文章通过建立系统小信号模型,分析了本文 所提控制策略中参数变化对系统稳定性的影响。

逆变器输出功率可表示为[15]

$$P = \frac{1}{R^2 + X^2} \left(RU^2 - RUU_0 \cos\theta + XUU_0 \sin\theta \right)$$
(22)

$$Q = \frac{1}{R^2 + X^2} \left(XU^2 - XUU_0 \cos\theta + RUU_0 \sin\theta \right)$$
(23)

$$\Delta \omega = \frac{\partial \omega}{\partial P} \Delta P + \frac{\partial \omega}{\partial m} \Delta m \qquad (24)$$

$$\Delta U = \frac{\partial U}{\partial Q} \Delta Q + \frac{\partial U}{\partial n} \Delta n \qquad (25)$$

$$\Delta P = \frac{\partial \omega}{\partial U} \Delta U + \frac{\partial P}{\partial \theta} \Delta \theta \tag{26}$$

$$\Delta Q = \frac{\partial Q}{\partial U} \Delta U + \frac{\partial Q}{\partial \theta} \Delta \theta \tag{27}$$

$$\Delta \theta = \frac{1}{s} \Delta \omega \tag{28}$$

由式(8)可知:

$$\Delta n = \Delta Q \times k_{\rm n}/s \tag{29}$$

式中:k_n为无功下垂系数。

一般将测量的功率通过一个低通滤波器¹⁶,滤 掉瞬时功率中的高频部分,低通滤波器的传递函 数可以表示为

$$G(s) = \frac{1}{Ts+1} \tag{30}$$

将式(8)和式(24)~式(30)代人式(22)、式 (23),整理后可得系统小信号模型为一个5阶的 数学模型:

$$As^{5} + Bs^{4} + Cs^{3} + Ds^{2} + Es + F = 0 \quad (31)$$

其中

令*k*_n=0.000 003,*k*_m从0变化到0.000 08时,根 据式(31)求得系统的特征根轨迹如图4a图所示。 其中4个极点受到*k*_m变化的影响较大,随着*k*_m的 增大,其中两个极点将越过虚轴,系统将呈现不 稳定状态;令*k*_m=0.000 003,*k*_n从0变化到0.000 08 时,根据式(31)求得系统的特征根轨迹如图4b所 示。其中4个极点受到*k*_n变化的影响较大,随着 *k*_n的增大,其中两个极点将越过虚轴,系统将呈现 不稳定状态。此现象刚好解释了本文提出的自 愈方法中,若积分系数较大,当功率差值较大时, 其乘积后的数值将是原下垂系数的好几个数量 级,因此系统将会不稳定。

4 仿真验证

4.1 仿真参数

为验证所提新型控制算法的可行性和有效 性,基于 Matlab/Simulink 搭建了系统仿真模型。 其中可调逆变器主电路的仿真参数为:额定功率 $P_{\rm N}$ =10 kW,直流电压 U=400 V,开关频率 $f_{\rm s}$ =10 kHz,滤波电感 $L_{\rm f}$ =1 mH,滤波电容 $C_{\rm f}$ =30 µF,等效 阻抗Z=0.1 Ω ,负载1阻抗Z₁=8 000 W+5 500 var,负 载2阻抗Z₂=8 000 W+5 500 var。控制器参数为: 空载角频率 ω^* =315 rad/s,给定频率 $\omega_{\rm n}$ =314 rad/s, $m_{\rm I}$ =0.001, $m_{\rm 2}$ =0.001 5, $k_{\rm mI}$ =0.000 001, $k_{\rm nI}$ =0.000 001, 空载电压 U*=220 V,给定电压 $U_{\rm n}$ =222 V, $n_{\rm I}$ = 0.001, $n_{\rm 2}$ =0.001 5, $k_{\rm m2}$ =0.000 001 5, $k_{\rm m2}$ =0.000 001 5. **4.2 仿真结果**

t=0~1 s时,2台逆变器带负载Z₁启动;t=0.8 s 时接入负载Z₂。具体的仿真结果如下图5所示。

从仿真结果可以看出,当系统稳定时,各个 逆变器通过自适应调节下垂系数实现了频率自 愈,同时功率按照容量比3:2实现功率合理分配, 与理论分析结果一致。

5 实验验证

为进一步验证本文所提控制策略的有效性和可行性,本节在两台LCL三相逆变器实验平台上对本文所提控制策略进行了实验验证。其中, LCL三相逆变器主要包括三部分:控制板、主电路和滤波电路。其中,控制板采用的是DSP+FP-GA模式,DSP采用的是TI的TMS320F2812来进行控制,FPGA采用的是EP2C8Q208CN来实现电压电流信号的计算。

图 6 为实验波形。从图 6a 中可以看到,电流 从空载一接入负载一稳态三个变化状态过程的 动态波形,频率经过快速的自适应调整之后,实 现了无频差控制;从图 6b 中可以看出,稳态时各 个 DG 单元的处理情况与自身容量成比例,实现 了有功功率的合理分配。上述试验波形与仿真 分析一致,从而验证了理论分析的正确性。

图 6 实验波形 Fig.6 Experiment waveforms

6 结论

文章针对负荷突增或发电功率骤降导致微 网系统整体输出功率不足,进而引起的频率和电 压越限问题,提出了一种具有自愈能力的下垂控 制算法。在实现频率和电压自愈的同时,保证了 功率在不同容量逆变器之间的精确分配。通过 根轨迹法分析了控制器参数变化时对系统稳定 性的影响,为参数的优化设置提供了依据。仿真 结果验证了所提策略的可行性和有效性。

参考文献

- [1] 杨新法,苏剑,吕志鹏,等.微电网技术综述[J].中国电机工 程学报,2014,34(1):57-70.
- [2] 梁英,盛万兴,钟庆昌,等.基于同步逆变器的微电网二次调频策略及特性分析[J].中国电机工程学报,2017,37(2): 391-402.
- [3] 杨向真,苏建徽,丁明,等.微电网孤岛运行时的频率控制策略[J].电网技术,2010,34(1):164-168.
- [4] Rocabert J, Luna A, Blaabjerg F, et al. Control of Power Converters in AC Microgrids[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4734-4749.
- [5] Simpson-Porco J W, Shafiee Q, Dörfler F, et al. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11):7025-7038.
- [6] 郭蕾,苏建徽,施永微网孤岛运行模式下的调频控制策略[J].电力系统自动化,2017,41(8):110-115.
- [7] 孙孝峰,杨雅麟,赵巍,等.微电网逆变器自适应下垂控制策略[J].电网技术,2014,38(9):2386-2391.
- [8] 郑永伟,陈民铀,李闯,等.自适应调节下垂系数的微电控制 策略[J].电力系统自动化,2013,37(7):6-11.
- [9] 张东,卓放,师洪涛,等.基于下垂系数步长自适应的下垂控 制策略[J].电力系统自动化,2014,38(24):20-25.
- [10] 孙孝峰,郝彦丛,赵巍,等.孤岛微电网无通信功率均分和电 压恢复研究[J].电工技术学报,2016,31(1):55-61.
- [11] 考虑电网分时电价的直流微电网分层协调控制[J]. 电网技 术,2016,40(7):1992-2000.
- [12] 欧阳丽,周丽红,何海斌.无需互联通信的直流微电网实时 功率协调控制策略[J].电网技术,2015,39(12):3449-3456.
- [13] 吕志鹏,苏剑,李蕊,等.不同功率等级微源逆变器并联控制 新方法[J].电工技术学报,2013,28(7):191-198.
- [14] 吕志鹏,吴鸣,黄红,等.一种具有网络自适应能力的分布式 电源改进下垂控制策略[J]. 电网技术,2018,42(9):2948-2957.
- [15] 阳建,刘勇,盘宏斌,等.基于虚拟同步机的微网逆变器无频 差控制[J].电网技术,2016,40(7):2001-2008.
- [16] 王文帝,徐青山,丁茂生,等.基于小信号建模的微电网下垂 控制稳定性分析[J].现代电力,2014,31(3):17-21.

收稿日期:2019-04-08 修改稿日期:2019-05-09