一种共享逆变器的双永磁同步电机 传动系统的拓扑及控制

李军军,李中启,易吉良

(湖南工业大学轨道交通学院,湖南 株洲 412000)

摘要:共享逆变器可简化传统轴控模式下的双机传动系统的拓扑结构,降低装置的体积和重量。针对共 享逆变器传动系统中单台电机的电压利用率低,导致电机牵引特性恒功区缩短,难以实现大功率输出的问题, 研究了一种新型共享逆变器的ZS9-双永磁同步电机传动系统。利用分时控制原理研究了双机的恒转矩-弱 磁控制策略,根据七段式空间矢量脉宽调制原理研究了最佳开关序列及Z源直通零矢量的生成、分配方法,采 用间接电压法对Z源电压进行控制。通过离线及硬件在环模拟了多种运行工况,实验结果表明:共享逆变器 传动系统中的双机可分别独立控制,能满足实际工程应用的需求。

关键词:共享逆变器;Z源;永磁同步电机;分时控制;直通零矢量 中图分类号:TM34 文献标识码:A DOI:10.19457/j.1001-2095.dqcd24112

Topology and Control of Shared Inverter Dual Permanent Magnet Synchronous

Machines Drive System

LI Junjun, LI Zhongqi, YI Jiliang

(College of Railway Transportation, Hunan University of Technology, Zhuzhou 412000, Hunan, China)

Abstract: Shared inverter can simplify the topology of the dual machines drive system under the traditional axis control mode, reduce the volume and weight of the equipment. In view of the low voltage utilization rate of a single motor in the shared inverter drive system, which leads to the shortening of the constant power area of motor traction characteristics and the difficulty in realizing high-power output, a new Z-source nine switch (ZS9) dual permanent magnet synchronous machine (PMSM) drive system of shared inverter was studied. The constant torque and field weakening control strategy of dual machines were studied by using the time-sharing control principle, according to the principle of seven segment space vector pulse width modulation (SVPWM), the optimal switching sequence and the generation and distribution method of Z-source shoot-through zero vector were studied, the indirect voltage method was used to control the Z-source voltage. A variety of operating conditions were simulated by off-line and hardware in the loop, the experimental results show that the dual machines in the shared inverter drive system can be controlled independently, which can meet the needs of practical engineering applications.

Key words: shared inverter; Z-source; permanent magnet synchronous machine (PMSM); time-sharing control; shoot-through zero vector

逆变器作为轨道车辆、新能源汽车、新能源 发电的核心关键设备,直接关系到上述装备传动 系统的性能。近些年随着科技的进步,永磁同步 电机(PMSM)在效率、功率密度等方面性能优异, 在交通等领域得到了广泛的应用。为保证永磁 同步传动系统的稳定运行,通常利用传感器获得 转子位置,电机因根据转子的位置进行控制通常 采用轴控模式,轴控模式下逆变器数量与电机是 相同的,导致传动装置造价高,结构复杂。

简约型逆变器由于特殊的拓扑结构,可使两 台电机共享一个逆变器,简化了传动装置的结 构。文献[1-5]提出了一些适用于双机驱动的,如 双 B4(four-switch),L5(five-leg)、三桥臂 S9(nineswitch)、四桥臂 S9的简约型逆变器,它们各具特

基金项目:湖南省自然科学基金省市联合基金(2019JJ60066);湖南省教育厅科研项目(19C0598)

作者简介:李军军(1976—),男,博士,讲师,Email:lijunjun8181972@sina.com

点。三桥臂 S9简约型逆变器由于器件数量适中, 拓扑结构简单,利用空间矢量脉宽调制(SVPWM) 和正弦脉宽调制(sinusoidal pulse width modulation,SPWM)方法可灵活地控制双电机^[6-8]。由 于共享逆变器,三桥臂 S9在简化系统结构、减小 体积和重量、成本上具有一定的优势,可满足轨 道车辆、新能源汽车交通运输装备电驱一体化要 求^[9-11],具有较好的工程应用价值。由于共享逆 变器使得两台电机电压利用率降低,导致电机牵 引特性的恒功区缩短,无法实现大功率输出,为 了提升电压利用率,通过引入Z源^[12-14]或改进调 制方法^[15-17]可以很好地解决这一问题。

为了满足电机宽范围的调速,实现大功率输出,本文将Z源与三桥臂 S9逆变器^[18]合二为一,研究了一种新型共享逆变器的ZS9-双PMSM传动系统。基于SVPWM调制方法,采用分时原理研究了双机的恒转矩--弱磁控制策略,研究了Z源网络的直通零矢量生成、分配方法,进行了离线和半实物仿真。

1 ZS9-双永磁同步电机驱动系统

ZS9-双永磁同步电机驱动系统如图1所示, 系统由Z源阻抗网络、S9逆变器和双永磁同步电 机三部分构成。

图1 ZS9-双永磁同步电机驱动系统

1.1 Z 源网络

Z源网络采用最经典的X型拓扑结构,Z源网络通过独特的阻抗网络将S9逆变器与直流电源 连接。Z源利用直通零矢量实现升降压,具有传 统电压型逆变器(voltage source inverter, VSI)不 具备的独特特性,克服了传统VSI为避免直通必 须要插入死区时间的问题,大大提高了系统的可 靠性,也解决了双电机共享逆变器导致的电压利 用率低的问题。

Z源网络输入输出满足以下关系^[7]:

$$U_{\rm in} = \frac{1}{1 - 2D_{\rm sh}} U_{\rm dc}$$
 (1)

式中: U_{in}, U_{de}, D_{sh}分别为Z源网络直流链电压、输入直流电压和直通占空比。

1.2 S9逆变器

S9逆变器拓扑结构见图1,其有3个桥臂,含 9个开关器件。上部的UH,VH,WH与中间的 UM,VM,WM开关器件组成上逆变器,下部的 UL,VL,WL与中间的UM,VM,WM开关器件构成 下逆变器,UM,VM,WM为两组逆变器的共享开 关器件。上部3个开关器件与下部3个开关器件 的开关信号经各自控制分别得到,中间3个开关 器件的开关信号经上部与下部的相异或后得到。

2 基于SVPWM的分时原理

在 SPWM 调制中,一路载波,一路调制波,两 者比较产生相应的 PWM 波。ZS9-双永磁同步电 机驱动系统中双电机要独立控制,需要上、下两 路调制波共用一路载波信号,这上、下两路载波 不能相交,调制系数两者之和小于1(频率、相位 均可不同),分时控制原理如图2所示。

Fig.2 Time-sharing control principle

将一个载波周期分为两部分,前半个周期控制 \$9 逆变器上部和中间6个开关器件的工作,这 与传统 VSI 逆变器相同,此时上部电机受控制, \$9 逆变器下部3个开关器件全部导通,相当于将下 部电机短接。而后半个载波周期则相反,上部电 机短接,下部6个开关器件工作,下部电机受控 制,这就是分时控制的基本思想。

S9逆变器可看做上、下两个常规逆变器的组合,其SVPWM调制原理与传统方法类似,上、下部逆变器各需1个参考矢量。表1为S9逆变器的 开关矢量表,表中"1"表示同一个桥臂上、中、下三 个开关器件的状态为(101),"0"表示(011),"-1" 表示(110)。 $V_1 \sim V_6$ 为上部逆变器6个有效矢量, $V_7 \sim V_{12}$ 为下部逆变器6个有效矢量, $V_{13} \sim V_{15}$ 为零矢 量。S9逆变器的矢量图如图3所示,图3a为上部 逆变器开关矢量,图3b为下部逆变器开关矢量。

Fig.1 ZS9 dual permanent magnet synchronous machine drive system

Tab.1 Switch vectors of S9 inverter 开关矢量 桥臂 U 桥臂 V 桥臂 W 类型 V_1 1 0 0 V V_2 1 1 0 0 V_3 0 1 0 上部逆变器 V_4 0 1 1 有效矢量 V_5 0 0 1 1 有效矢量 V_6 1 0 1 1 7 V_6 1 0 1 1 7 1 1 V_7 -1 1 1 1 1 1 1 V_7 -1 1									
开美矢量 桥臂 U 桥臂 V 桥臂 W 类型 V_1 1 0 1 1 0 1 0 1 1 0 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>									
V1 1 0 0 V2 1 1 0 V V3 0 1 0 上部逆变器 V4 0 1 1 有效失量 V5 0 0 1 1 有效失量 V6 1 0 1 1 1 V6 1 0 1 1 1 1 V6 1 0 1									
V_2 1 1 0 V_3 0 1 0 上部逆变器 V_4 0 1 1 有效矢量 V_5 0 0 1 1 有效矢量 V_6 1 0 1 1 有效矢量 V_7 -1 1 1 1 V_7 -1 1 1 1 V_9 1 -1 1 T 1 V_9 1 -1 1 1 7 1 1 1 V_{10} 1 -1 -1 7 1 3 1									
V_3 0 1 0 上部逆变器 V_4 0 1 1 有效矢量 V_5 0 0 1 1 有效矢量 V_6 1 0 1 1 7 V_6 1 0 1 1 1 V_7 -1 1 1 1 V_9 1 -1 1 T V_9 1 -1 1 7 V_{10} 1 -1 -1 7 7 V_{11} 1 1 -1 7 7 7 7 1 1 7 7 7 7 7 1 1 7 7 7 1 1 7 7 7 1 1 1 7 7 7 1									
V_4 0 1 1 有效矢量 V_5 0 0 1 V_6 1 0 1 V_6 1 0 1 V_7 -1 1 1 V_7 -1 1 1 V_9 1 -1 1 下部逆变器 V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 -1 V_{12} -1 1 1 -1 V_{12} -1 1 1 -1 V_{12} -1 1 1 -1 V_{13} 1 1 1 -1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 -1 $V_{3}(010)$ $V_{2}(110)$ $V_{2}(110)$ -1 $V_{3}(010)$ $V_{2}(110)$ -1 -1	:								
V_5 0 0 1 V_6 1 0 1 V_7 -1 1 1 V_7 -1 1 1 V_9 1 -1 1 下部逆变器 V_{10} 1 -1 -1 有效失量 V_{11} 1 1 -1 V_{12} -1 1 -1 V_{12} -1 1 1 V_{12} -1 1 1 V_{12} -1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 V_{100} $V_{2}(110)$ $V_{2}(110)$ $V_{2}(110)$									
V_6 1 0 1 V_7 -1 1 1 V_8 -1 -1 1 V_9 1 -1 1 下部逆変器 V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 V_{12} -1 1 -1 V_{12} -1 1 -1 V_{12} -1 1 1 V_{13} 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 $V_{3}(010)$ $V_{2}(110)$ $V_{2}(110)$									
V_7 -1 1 1 V_8 -1 -1 1 V_9 1 -1 1 下部逆变器 V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 V_{12} -1 1 -1 V_{12} -1 1 1 V_{12} -1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1									
V_8 -1 -1 1 V_9 1 -1 1 下部逆变器 V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 -1 V_{12} -1 1 -1 -1 V_{12} -1 1 1 -1 V_{12} -1 1 -1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 V_{15} -1 -1 -1 V_{10} 0 0 0 零矢量 V_{10} V_{10} $V_{2}(110)$ V_{10} V_{10}									
V_9 1 -1 1 下部逆变器 V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 V_{12} -1 1 -1 V_{12} -1 1 1 V_{13} 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 V_{15} -1 -1 -1 $V_{10}(010)$ $V_2(110)$ $V_2(110)$									
V_{10} 1 -1 -1 有效矢量 V_{11} 1 1 -1 V_{12} -1 1 -1 V_{13} 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 V_{15} -1 -1 -1	:								
V_{11} 1 1 -1 V_{12} -1 1 -1 V_{13} 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1									
V_{12} -1 1 -1 V_{13} 1 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1									
V_{13} 1 1 1 V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1									
V_{14} 0 0 0 零矢量 V_{15} -1 -1 -1 $V_{3}(010)$ $V_{2}(110)$ $V_{2}(110)$ III U_{1} V_{10} V_{10}									
$V_{15} -1 -1 -1$ $V_{3}(010) V_{2}(110)$ $II I$ $U_{15} -1 -1 -1$									
$V_{3}(010)$ $V_{2}(110)$ III θ_{1} V_{reft}									
V_{4} (011) V_{5} (001) (a)上部逆变器									
$V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(1-11)$ $V_{0}(-1-11)$ (b)下部逆变器 图3 S9逆变器矢量图 Fig.3 Vectors of S9 inverter 为了简化分析,以第 I 扇区为例。设 $(V_{0} = V_{0}/4)$									

$$\begin{cases} \boldsymbol{V}_{\text{ref1}} = \boldsymbol{V}_{\text{ref1}} \angle \boldsymbol{\theta}_1 \\ \boldsymbol{V}_{\text{ref2}} = \boldsymbol{V}_{\text{ref2}} \angle \boldsymbol{\theta}_2 \end{cases}$$
(2)

式中: V_{ref1} , V_{ref2} 和 θ_1 , θ_2 分别为参考电压矢量幅值和相角。

根据平行四边形法则,满足:

$$\frac{T_2 V_2}{\sin\theta_1} = \frac{T_1 V_1}{\sin(\pi/3 - \theta_1)} = \frac{T V_{\rm ref}}{\sin(2\pi/3)}$$
(3)

式中:T为开关周期。

计算上部逆变器有效矢量作用时间T1,T2,结

果如下式:

$$\begin{cases} T_{1} = \frac{TV_{\text{ref}}\sin(\pi/3 - \theta_{1})}{V_{1}\sin(2\pi/3)} \\ = \frac{TV_{\text{ref}}\sin(\pi/3 - \theta_{1})}{(\sqrt{3}/2) \cdot (2V_{\text{de}}/3)} \\ = \frac{\sqrt{3}}{2} m_{\text{U}}T\sin(\pi/3 - \theta_{1}) \\ T_{2} = \frac{T\sin\theta_{1}V_{\text{ref}}}{V_{2}\sin(2\pi/3)} \\ = \frac{\sqrt{3}}{2} m_{\text{U}}T\sin\theta_{1} \end{cases}$$
(4)

式中:mu为上部逆变器调制系数。

同理,下部逆变器有效矢量作用时间*T*₃,*T*₄由下式得出:

$$\begin{cases} T_3 = \frac{\sqrt{3}}{2} m_{\rm L} T \sin(\pi/3 - \theta_2) \\ T_4 = \frac{\sqrt{3}}{2} m_{\rm L} T \sin \theta_2 \end{cases}$$
(5)

式中:m_L为下部逆变器调制系数。 零状态作用时间为

 $T_0 = T - T_1 - T_2 - T_3 - T_4 \tag{6}$

假设上、下部逆变器调制系数m相同且不变 (取值0.577),ZS9逆变器中零矢量作用时间为

$$T_{0} = T \{ 1 - \frac{\sqrt{3}}{2} m [\sin(\pi/3 - \theta_{1}) + \sin\theta_{1} + \sin(\pi/3 - \theta_{2}) + \sin\theta_{2}] \}$$

= $T [1 - \frac{\sqrt{3}}{2} m \cdot 2\cos(\frac{\pi}{6} - \frac{\theta_{1} + \theta_{2}}{2})\cos(\frac{\theta_{1} - \theta_{2}}{2})]$
(7)

 T_0 作用时间随参考电压矢量的角度改变而变化, 在 $\theta_1 = \theta_2 = \pi/6$ 时, T_0 取最大值。 其它几个扇区变化规律相同。

.

3 最佳开关序列及直通零矢量

为了使ZS9驱动系统性能接近最佳,如降低 开关次数及损耗,减少谐波,且便于实施,应合理 安排有效矢量、零矢量和直通零矢量序列。直通 零矢量的生成和插入不能改变有效矢量的作用 时间,其原理和单VSI逆变器类似。

3.1 最佳开关序列

以第 I 扇区为例,图4为简单 SVPWM (simple SVPWM,S-SVPWM) 调制原理图,按分时控制 原理,上、下部逆变器分别在前、后半个周期内进 行控制,图中的 T_{COMI}~T_{COM6}为UH,VH,WH和UL, VL,WL6个开关对应的切换时刻。

Fig.4 S-SVPWM modulation principle and arrangement of vector

上、下部逆变器有效矢量和零矢量(灰色阴 影块)按开关切换次数最少原则排列。S-SVPWM 在1个周期内开关切换12次,为了获得不同的电 压增益,可将所需的直通零矢量插入到零矢量 V_{13}, V_{14} 和 V_{15} 之中。

类似的,有效矢量和零矢量还可以按其它方 式排列,图5和图6分别为最少开关次数SVPWM (reduce switch SVPWM, RS-SVPWM)和减少谐波 SVPWM(reduce THD SVPWM, RTHD-SVPWM)的 开关序列。同理,直通零矢量插入的方法如前所 述。RS-SVPWM调制在1个周期内开关切换8 次,RTHD-SVPWM调制方式上、下逆变器有效矢 量紧邻,相互间转换时涉及的开关次数相应增 加,在1个周期内开关切换10次。

	**	* *	 	* *	T 7	1 7 7	T 7	T 7	T 7	T 7
	× 10	F K 1	 		12	1 7 7	1 1 0			F 12
14	1.10	- 44			1.12					10
						/				

图5 RS-SVPWM开关序列 Fig.5 Switch sequence of RS-SVPWM

 $V_8 V_7$ $V_2 V_1 V_{14}$ $V_1 V_2 V_7 V_8$

图6 RTHD-SVPWM开关序列

Fig.6 Switch sequence of RTHD-SVPWM

在SVPWM调制方法中可以将两种矢量"000" 与"111"交替采用,达到改善性能的目的。基于这 一思想,将6个扇区分成了12个区间,如图7所示。

处于同一扇区的两个区间前、后各30°采用 的零矢量不同。任意相邻三个空间矢量若选择 合适的零矢量,可使逆变器某相开关在1个周期 内连续有120°处于不作开关切换动作。a,b,c为 I, VI, V扇区中线, a 与 b 区间采用零矢量"000"和"-1-1-1",在b与c区间采用零矢量"111"。

图7 零矢量优化原理

Fig.7 Principle of ZVO-SVPWM 该方法称之为零矢量优化(zero vectors optimized SVPWM, ZVO-SVPWM), 可以看做RS-SVPWM和 RTHD-SVPWM方法的组合,开关切换次数大大 增加,实现也较复杂,矢量排列如图8所示。

$V_2 = V_1$	V_{14}	V_1	$V_2 V_7$	V ₈	<i>V</i> ₁₅		$V_8 V_7$				
(a)3,5,6和7,8,10区间											
V_{13} V_{2}	V_1	V_2	V_{13}	V_{γ}	V_8	V_{7}	V_{13}				
图8 零矢量优化的有效矢量及零矢量排列											
Fig.8 Effective vector and zero vector arrangement											
of zero vector optimization											
1. 净丽釉子油 计开关团换波器 速水池速度											

上述四种方法从开关切换次数、减少谐波比 较而言, RTHD-SVPWM调制方法占有优势。下 面以RTHD-SVPWM为例开展说明。

开关矢量时间的计算。以第 I 扇区为例,上 部逆变器和下部逆变器的开关矢量时间分别为

$$\begin{cases} T_{a1} = T/4 \\ T_{b1} = T_{a1} + T_{1}/2 \\ T_{c1} = T_{b1} + T_{2}/2 \end{cases}$$
(8)
$$\begin{cases} T_{a2} = T/4 \\ T_{b2} = T_{a2} - T_{1}/2 \\ T_{c2} = T_{b2} - T_{2}/2 \end{cases}$$
(9)

其它几个扇区开关时间点的计算相似。为 了保证两台电机独立调节,上、下部逆变器工作 不超过半个周期。

3.2 直通块的生成与插入

要实现预期的升压,必须插入足够的直通零 矢量,直通方式可以是三相、任意两相和单相。 采用单相桥臂直通,直通状态涉及开关切换次数 最少,但直通块并不固定在某个桥臂之上,采 用动态分配。在前半个周期内,上部逆变器每隔 $\pi/3, A, B 与 C 三相开关的调制函数 T_{con1}(UH),$ $T_{com2}(VH)和T_{com3}(WH)大小会改变一次,找到最大$ 者并将直通块送入最大者所对应的桥臂。下部 逆变器则相反,在后半个周期内,确定下部逆变器 开关的调制函数 $T_{com4}(UL), T_{com5}(VL)$ 和 $T_{com6}(WL)$

中的最小者,并送到对应的桥臂。采用这种方式,每次插入直通块仅仅涉及一个开关器件动作,开关次数最小,避免了固定某相直通时器件 电流应力过大。

直通块的生成及分配以RTHD-SVPWM为例,也就是在零矢量 V_{14} 与 V_{15} 中插入直通块,其生成原理如图9所示,图中灰色部分为零矢量,斜杠阴影部分为直通零矢量。

直通块既可以插入到零矢量 V_{14} 与 V_{15} 的两侧,也可以放入到它们的中央,两种方式所插入 的直通时间 ΔT 大小分别为 $D_{sh}T/4$ 和 $D_{sh}T/2$ 。上述 两种方法所产生的升压效果完全一样,但是直通 块插在中央时开关序列在一个载波周期内开关 器件的开关次数要比插在两侧的多4次。因此, 直通零矢量的生成及插入采用图9所示的方法。

4 ZS9-双永磁同步电机系统的控制

ZS9-双永磁同步电机驱动系统的控制包括 Z源阻抗网络和PMSM两部分的控制,如图10 所示。

图10 ZS9共逆变器双永磁同步电机传动系统的控制

Fig.10 Control of shared inverter ZS9 dual permanent magnet synchronous motor drive system

4.1 Z 源网络直流链电压 U_{in}的控制

U_{in}直接关系到ZS9逆变器输出的质量,也关系到PMSM控制的效果,因此对U_{in}的控制应具有良好的动、静态性能。

U_{in}既要保持稳定又要达到预期升压,考虑到 U_{in}为一脉冲序列,在计算有效矢量持续以及开关 矢量时间均要用到U_{in},若直接采用U_{in}计算和控制 将非常不方便。由于U_{in}与电容电压U_e、直通占空 比D_{sh}存在确定关系,U_{in}采用间接电压控制,控制和 计算时就很方便了,U_{in}的控制原理如图11所示。 外环对电容电压控制以维持Uin的稳定,内环引入

了电感电流 i₁提高动态响应,保证了 Z 源网络直流链电压具有较好的稳定性与动态特性。

4.2 PMSM 的恒转矩和弱磁控制

为了更准确反映 PMSM 的实际情况,考虑凸极效应、磁路饱和等现象, PMSM 模型采用三相静止 ABC 坐标系下的数学模型, 电压方程如下:

$$\begin{bmatrix} U_{a} \\ U_{b} \\ U_{c} \end{bmatrix} = R_{s} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + (L_{0} - M) \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} e_{a} \\ e_{b} \\ e_{c} \end{bmatrix} + \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \Psi_{a} \\ \Psi_{b} \\ \Psi_{c} \end{bmatrix}$$
(10)

其中

$$\begin{bmatrix} \Psi_a \\ \Psi_b \\ \Psi_c \end{bmatrix} = L_2 \begin{bmatrix} \cos(2\theta) & \cos(2\theta + 2\pi/3) & \cos(2\theta - 2\pi/3) \\ \cos(2\theta + 2\pi/3) & \cos(2\theta - 2\pi/3) & \cos(2\theta) \\ \cos(2\theta - 2\pi/3) & \cos(2\theta) & \cos(2\theta + 2\pi/3) \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}$$
$$L_2 = (L_d - L_a)/3$$

式中: U_a , U_b , U_c 为定子三相绕组电压; i_a , i_b , i_c 为定 子三相绕组电流; Ψ_a , Ψ_b , Ψ_c 为定子磁链; R_s 为定子 相电阻; L_0 为每相绕组的漏电感;M为互感系数。 电磁转矩方程如下:

$$\begin{cases} T_{em} = T_{em0} + T_r \\ = \frac{1}{\omega_m} \left(e_a \cdot i_a + e_b \cdot i_b + e_c \cdot i_c \right) + \\ \frac{1}{\omega_m} \left(\frac{\mathrm{d}\Psi_a}{\mathrm{d}t} \cdot i_a + \frac{\mathrm{d}\Psi_b}{\mathrm{d}t} \cdot i_b + \frac{\mathrm{d}\Psi_c}{\mathrm{d}t} \cdot i_c \right) \\ T_r = \frac{3}{2} \cdot p \cdot (L_d - L_q) \cdot I_d \cdot I_q \end{cases}$$

$$(11)$$

式中: T_{em} 为电磁转矩; T_{em0} 为永磁转矩; T_r 为磁阻 转矩;p为极对数; ω_m 为机械角速度。 机械运动方程如下:

$$\begin{cases} J \frac{\mathrm{d}\omega_{\mathrm{m}}}{\mathrm{d}t} = T_{\mathrm{em}} - T_{\mathrm{L}} - R_{\Omega}\omega_{\mathrm{m}} \\ \omega_{\mathrm{e}} = \omega_{\mathrm{m}} \cdot p \end{cases}$$
(12)

式中: T_L 为负载转矩;J为转动惯量; R_{Ω} 为阻力系数; ω_{e} 为电角速度。

式(10)~式(12)构成了完整的PMSM数学模型, PMSM的仿真模型以上述公式搭建而成。

以逆变器运行时电压、电流极限条件判定电机电压、电流是否越限,实现恒转矩和弱磁控制。稳态时永磁同步电机*d-q*坐标系下电压和转矩方程如下:

$$\begin{cases} u_d = -\omega_e L_q i_q + R_s i_d \\ u_q = \omega_e L_d i_d + \omega_e \Psi_f + R_s i_q \\ T_{em} = p \left[\Psi_f i_q + (L_d - L_q) i_d i_q \right] \end{cases}$$
(13)

式中: i_{d} , i_{q} , u_{d} , u_{q} 分别为定子d,q轴电流和电压; Ψ_{f} 44 为转子磁链。

PMSM运行特性受到逆变器极限电压及 PMSM发热情况的制约,电机电流、电压的约束条 件为

$$\begin{cases} i_{s} = \sqrt{i_{d}^{2} + i_{q}^{2}} \leq i_{\max} \\ u_{s} = \sqrt{u_{d}^{2} + u_{q}^{2}} \leq U_{\max} \end{cases}$$
(14)

式中:*i*_s,*u*_s分别为电机定子电流与电压;*i*_{max},*U*_{max} 分别为电机定子电流与电压的极限值。 稳态运行时,电机转速通常较高,电抗远大于*R*_s, *R*_s可以忽略。将式(13)中的电压方程代入式(14), 可以获得电压极限椭圆方程如下:

$$(L_q i_q)^2 + (\Psi_f + L_d i_d)^2 \le (U_{\text{max}} / \omega_e)^2$$
 (15)

考虑L_a与L_a不相等的情况,如图12所示,从 图中可知电机定子电流要同时满足电压、电流极 限方程,因此电机定子电流必须要同时落在电压 极限椭圆与电流极限圆所包含的区域内。

图12 电压极限椭圆与电流极限圆

 $Fig. 12 \quad Voltage \ limit \ ellipse \ and \ current \ limit \ circle \ diagram$

在恒转矩区内,电机转速从零逐步提高,此时定子机端电压低于逆变器电压极限值U_{max}。电机转速增大到额定转速时,电机机端电压也将达到极限值。当转速小于转折速度(恒转矩区),电流控制方式采用最大转矩/电流控制,实现单位电流输出最大转矩控制,即*i=i_{max},U<U_{max},利用U_{max}作为恒转矩控制与弱磁控制的判断条件。*

采用最大转矩控制,d轴的电流为

$$\begin{cases} i_{d} = \frac{\Psi_{f}}{4(L_{q} - L_{d})} - \sqrt{\frac{\Psi_{f}^{2}}{16(L_{q} - L_{d})^{2}} + \frac{i_{s}^{2}}{2}} & L_{d} < L_{q} \\ i_{d} = 0 & L_{d} = L_{q} \\ i_{d} = \frac{\Psi_{f}}{4(L_{q} - L_{d})} + \sqrt{\frac{\Psi_{f}^{2}}{16(L_{q} - L_{d})^{2}} + \frac{i_{s}^{2}}{2}} & L_{d} > L_{q} \end{cases}$$

$$(16)$$

考虑到 $i_d^2 + i_q^2 = i_s^2$,联立式(16),可以得到以 i_q 表示的 i_d 的函数式:

$$\begin{cases} i_{d} = \frac{\Psi_{f}}{2(L_{q} - L_{d})} - \sqrt{\frac{\Psi_{f}^{2}}{4(L_{q} - L_{d})^{2}} + i_{q}^{2}} & L_{d} < L_{q} \\ i_{d} = 0 & L_{d} = L_{q} \\ i_{d} = \frac{\Psi_{f}}{2(L_{q} - L_{d})} + \sqrt{\frac{\Psi_{f}^{2}}{4(L_{q} - L_{d})^{2}} + i_{q}^{2}} & L_{d} > L_{q} \end{cases}$$

(17)

电流沿着最大转矩/电流轨迹运行时,当转速 增加,电压极限椭圆将趋于变小,当永磁同步电 机转速达到某一值时,沿着最大转矩轨迹的电流 矢量将超越电压极限椭圆区域,电机机端电压将 达到 U_{max}。为实现恒功率扩速,通过控制电机定 子去磁电流分量维持电压平衡而不超越极限,实 现弱磁扩速。

若忽略定子电阻*R*_s,根据式(13)和式(14)可得到电机弱磁控制时的电流矢量方程:

$$\begin{cases} i_{d} = -\frac{L_{d}\Psi_{f} - L_{q}\sqrt{\Psi_{f}^{2} + (L_{q}^{2} - L_{d}^{2})(i_{s}^{2} - U_{max}^{2}/\omega_{e}^{2}L_{q}^{2})}{L_{q}^{2} - L_{d}^{2}} & L_{d} \neq L_{q} \\ i_{d} = -\frac{\Psi_{f}^{2} + L_{q}^{2}i_{s}^{2} - U_{max}^{2}/\omega_{e}^{2}}{2L_{d}\Psi_{f}} & L_{d} = L_{q} \end{cases}$$
(18)

联立式(18)和 $i_d^2 + i_q^2 = i_s^2$,可以得到以 i_q 表示的 i_d 的函数:

$$i_{d} = -\frac{\Psi_{\rm f}}{L_{d}} + \frac{\sqrt{U_{\rm max}^{2}/\omega_{\rm e}^{2} - L_{q}^{2}i_{q}^{2}}}{L_{d}}$$
(19)

当永磁同步电机运行在高于额定转速情况下时,这种弱磁控制的任何时候都适用,但是对具有 $L_d < \Psi_f / I_{max}$ 的永磁同步电机的弱磁扩速是有限的。

定子电流最优控制和弱磁控制原理如图 13 所示。 A_1 点为最大转矩/电流轨迹与电流极限圆的相交点,若沿轨迹 OA_1 运行,可实现恒转矩运行, A_1 点对应的转速即为 ω_{r1} 。

在弱磁控制中,若保持定子电流为额定值, 定子电流矢量 i_s 的轨迹将由 A_1 点沿圆周运动至 A_2 点,与此点对应的速度 ω_{r2} ,这是在电压极限约束 下,电机以最大功率输出的最低速度。

当 ω_{r^2} 时,将沿最大功率输出轨迹运行至极限运行点为 $A_4(-\Psi_r/L_a,0)$,理论上电机转速可以达到无限大。在实际运行过程。即使逆变器能够提供较大的去磁电流,必须考虑去磁作用过大对永磁体不可逆退磁的影响。

5 仿真

该部分主要对前面的理论及ZS9-双永磁同 步电机传动系统的控制进行验证。

5.1 离线仿真

离线仿真模型在 Matlab 中搭建,限于篇幅本 文仅列出了负载突变和正、反转时的仿真情况。

PMSM₁转矩保持60 N·m不变, PMSM₂转矩由 60 N·m增至100 N·m。当PMSM₂负载突变时,转 速有波动,但经过调节后,可恢复至原来值。 PMSM₁运行不受影响, Z源直流链电压保持稳定 无波动。仿真结果如图14~图19所示。

Fig.17 Speed of PMSM₂

两个电机正、反转仿真结果如图 20~图 23 所示。从仿真结果可以看出,两台 PMSM 转向相反时可分别独立控制,系统运行状况良好。

Fig.23 Reverse speed of $PMSM_2$

在转矩控制模式下对牵引与制动两种模式 进行了联合全工况模拟,图24~图29为离线全工 况仿真结果。转矩设定为:启动时电机以最大转 矩启动,随着转速增加进入恒功区,进入恒速阶 段后转矩保持额定转矩,制动阶段与启动阶段相 反。从仿真结果可知,在牵引与制动工况切换瞬 时,U_m,Z源电容电压及PMSM机端电压有明显的 突变,但很快能稳定下来。Z源电感电流及 PMSM q轴电流在两种工况切换时改变了方向, 说明ZS9变流器可将能量反馈,ZS9逆变器在全 工况下运行良好。

5.2 半实物仿真

半实物仿真系统由三部分组成:开发与监控系统由2台主机构成;实时仿真系统由1台RT-LAB OP5600实时仿真器构成,是整个系统的核心部分; 被测实物系统由控制器和信号接口箱组成。

两台 PMSM 转速从 110 s 的 10 r/min 开始加速 10 s, 至最大转速恒速 1 300 r/min 后运行 20 s。恒速 段结束后发制动指令, 10 s 后开始减速至 10 r/min, 其后转速保持 10 r/min,转矩设定和前面的离线 仿真相同。仿真结果如图 30~图 36 所示, 从对半

Fig.36 Full working condition characteristics $T_e - n / U - n$ curves

实物仿真结果来看,两台PMSM的工作特性及T。~n /U~n曲线基本一致,与离线仿真结果也吻合,两 台电机可实现独立控制,控制效果良好。

6 结论

本文研究了一种共享逆变器的ZS9-双永磁 同步电机传动系统,对其关键技术,即分时控制 原理、最佳开关序列、直通块的生成及分配方法、 PMSM的控制方法,展开了研究。仿真实验结果 表明,ZS9双电机可分别独立控制,适应不同的工 况。这种共逆变器系统较传统轴控VSI逆变器系 统在减少开关器件及门控单元数目方面有明显 优势。总而言之,ZS9在成本及部分性能上有一 定优势,适合双机共逆变器应用场合,完全可以 满足实际工程应用的需求。

参考文献

- 张红伟,王海林.电动汽车用双感应电机单变频器驱动系统 研究[J].电气传动,2018,48(6):3-8.
 ZHANG Hongwei, WANG Hailin. Research on single inverter drive system with double induction motor for electric vehicle[J]. Electric Drive,2018,48(6):3-8.
- [2] KLIMA J. Analytical investigation of an induction motor fed from B4 inverter with a new space-vector modulation strategy [C]//Conference on Electric Machines and Drive, IEEE, USA, 2003:1916-1923.
- [3] HARA A, ENOKIJIMA H, MATSUSE K. Independent speed control of two induction motors fed by a five-leg inverter with space vector modulation[C]//Industry Application Society Annual Meeting, IEEE, 2011:1–8.
- [4] DEHNAVI S M D, MOHAMADIAN M, YAZDIAN A. Space vectors modulation for nine-switch converters[J]. IEEE Transactions on Power Electronics, 2010, 25(6):1488–1495.
- [5] WANG Rutian, LI Chaochao, LIU Chuang, et al. Control strategy for four-leg nine-switch inverter under unbalanced loads[J]. IEEE Access, 2020, 8:57377-57389.
- [6] RAJAMBAL K, RAJARAJAN B, KHAN A U. Design analysis and implementation of nine switch inverter for the independent control of two AC motors[C]//IEEE International Conference on Power Electronics, New Delhi, India, 2010:28–30.
- [7] GAO Feng, ZHANG Lei, LI Ding. Optimal pulse width modulation of nine-switch converter[J]. IEEE Transactions on Power Electronics, 2010, 25(9):2331–2343.
- [8] JYOTHI M, SUAMAN T, SCHOLAR P G. SVM technique for nine switch inverter with motor load[J]. International Journal of Engineering Science and Computing, 2016, 6(5):6011–6014.
- [9] 邱伟康,陈宇,文刚.九开关双馈风力发电系统的恒定开关频率电流滑模控制[J].中国电机工程学报,2018,38(2):
 6134-6144.

QIU Weikang, CHEN Yu, WEN Gang. Constand switching frequency current sliding mode control method for nine-switch converter based on doubly wind generation system[J]. Proceedings of the CSEE, 2018, 38(2):6134-6144.

- [10] 刘陵顺,吕兴贺,雷娇,等.基于九开关变换器的集成车载充 电器的研究[J].电气自动化,2018,40(3):15-19.
 LIU Lingshun,LÜ Xinghe,LEI Jiao, et al. Research on an onboard integrated charger based on the nine switch converter[J]. Electrical Automation,2018,40(3):15-19.
- [11] 杨帆,韩俊飞,胡宏彬,等.九开关型永磁同步机风电系统运行控制研究[J]. 微电机,2020,53(1):54-59.
 YANG Fan,HAN Junfei,HU Hongbin,et al. Research on operation control of NSC-PMSG wind power system[J]. Micromotors, 2020,53(1):54-59.
- [12] PENG Fangzheng. Z-source inverter[J]. IEEE Transactions on Industry Application, 2003, 39(2):504-510.
- [13] 邓文浪,旷怡,李利娟,等.Z源三相三电平矩阵变换器研究
 [J]. 电气传动,2017,4(12):34-39.
 DENG Wenlang, KUANG Yi, LI Lijuan, et al. Research on Z-source stacked matrix converter[J]. Electric Drive,2017,4(12): 34-39.

JU Xinchao. The study of the series Z-source and nine-switch inverter stage dual-output TSMC[D]. Xiangtan: Xiangtan University, 2016.

- [15] 胡光,刘陵顺,李永恒.九开关变换器驱动六相永磁同步电机的SVPWM控制[J]. 微电机,2018,51(12):42-47.
 HU Guang, LIU Lingshun, LI Yongheng. The nine-switch converter drives six-phase permanent magnet synchrounous motor with SVPWM control[J]. Micromotors,2018,51(12):42-47.
- [16] 李楠,高峰,田昊.九开关变换器脉宽调制策略[J].电力系统 自动化,2014,38(3):83-88.
 LI Nan,GAO Feng,TIAN Hao. Pulse width modulation strategy of nine-swicth converter[J]. Automation of Electric Power System,2014,38(3):83-88.
- [17] 潘雷,王凯,张俊茹,等.九开关变换器直接电流控制研究
 [J].电机与控制学报,2018,22(11):105-113.
 PAN Lei,WANG Kai,ZHANG Junru, et al. Direct current control for nine-switch converter[J]. Electric Machines and Control, 2018,22(11):105-113.
- [18] ZHANG Jingmei, PANG Yi, WANG Kai. Modulation method for nine-switch converter based on equivalent mechanism between nine-switch converter and dual six-switch converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (4) : 2845– 2855.

收稿日期:2022-11-30 修改稿日期:2022-03-15